GEM*STAR Demonstration Subcritical Reactor for Los Alamos County

to

Environmental Sustainability Board County of Los Alamos February 16, 2017

from

Charles D. Bowman, President ADNA Corporation Accelerator Driven Neutron Applications Los Alamos, NM Formed February 1997

Proposal to Los Alamos National Laboratory from

ADNA Corporation Accelerator Driven Neutron Applications Los Alamos, NM Formed February 1997

for

LANSCE Beam Servicing Three NNSA/DOD Needs: New Start tritium requirement Demo W-Pu burning upholding U. S. Russia Treaty 100 % renewable diesel for the DOD

ADNA Corporation Proposal

Tritium production for New Start stockpile support (600 g/y)

Demonstration for burning 34 tons of W-Pu required by U. S.- Russian treaty at no cost to NNSA (50 kg/year)

Production of 75 million gallons per year of 100% renewable diesel from byproduct cellulosic materials (wood refuse)

Thirty years of LANSCE beam to ADNA with all current LANSCE programs continuing

ADNA capital into LANL TA-53 \$280 million with 20 % from Investors and an 80 % small business loan at 6 % over 30 years

No *capital* cost from NNSA for tritium or W-Pu burning capability

Five percent of private investment already committed placing a present value on ADNA Corporation of \$12.5 million

Invent the

31

ADNA Corporation Advances and Implementations 1997 to 2016

Molten salt continuous flow*

Vector graphite for higher moderator performance* Indirect spallation target*

> Lower proton energy with same neutron efficiency More efficient target cooling Much longer target life

Cellulosic biomass to 100 % renewable diesel*

UF₄ fuel and viability of unlimited ocean uranium* ⁷Li isotopic separation by centrifugation*

Superconducting accelerator gradient to 10 MeV/m Doubling efficiency of r. f. power generation

* ADNA Patents in Process

ADNA's GEM*STAR Subcritical Demo 125 MWt

75 million gal. diesel/year + 600 grams tritium/year

Wood to 100 % Renewable Liquid Fuels

ADNA's GEM*STAR Demo Economics Demo Income 75 million gal/y of renew. diesel @ \$2.50/gal \$188 million 600 grams per year of tritium @ \$30k/gram **18 million** Total \$206 million **Demo Operations** Labor costs for reactor and diesel **Average \$83.00/hr for 150 workers 2000 hr/y** 25 million Loan repayment \$232 million @6% for 12 years 26 Wood input for 75 million g/y diesel 65 \$0.43/gallon wood delivery price \$0.43/gallon wood processing price NM Gross Receipts tax @ 7.5 % on ADNA Corp. 15 Total \$131 million **Net \$75 million/year**

GEM*STAR at LANSCE Economics If W-Pu Unavailable

Adjustment: Use natural uranium fuel instead	
Agreement: if NNSA provides no W-Pu, the \$55 million i	s not due
Requires : 0.1 tons ⁷ Li per year at 0.999 isotopic purity	\$ 1.0 M
Consumes: 3.7 tons per year of natural UF4	0.5
Eliminates: Cost of W-Pu 10 million/year eliminated	10.
Result: Production rate and cost of 100 % renewable	
diesel about the same as with burning W-Pu	
Loss: Tritium production and sale to NNSA	
Gross income from diesel	\$188
Operations costs	<u>143</u>
Annual return on a \$58 million investment	\$45 million
With P/E ratio of 15, ADNA Corp. value in 2022	\$675 million
For Private investor:	

ADNA Corp. investment at LANSCE remains attractive even if W-Pu is not made available for tritium production

Standard GEM*STAR Module at 500 MWt

With four super conducting proton accelerators and four targets Same graphite reactor size as at LANSCE

LANSCE Accelerator 800 MeV 1 MeV/meter 1000 meter length 0.8 MW beam power 15 % bussbar to beam

GEM*STAR accelerator 400 MeV 10 MeV/meter 50 meter length 1.0 MW beam power each 50 % bussbar to beam

300 million gal./year diesel 100 % renewable \$750 million/year gross @ \$2.50 per gallon

GEM*STAR W-Pu Burning at TA-21

Subcritical core same size as LANSCE Demo Four accelerators for 2.5 mA protons at 400 MeV **Total accelerator power 8 MWe** Fission power 500 MWt (about 1/8 of a new LWR) Tons of W-Pu burned in 40 years is 8.5 tons 5.1 million tons Forest fire wood input per year from 200,000 burned acres 130 million acres Western forests burned per year Remnant charred logs per year 3 billion tons 300 million gallons of diesel per year selling for \$2.50/gal Gross receipts tax of \$56 million on \$750 millions sales 600 employees at TA-21 **1000 employees in northern NM forests** With enriched ⁷Li, tritium recovery low and uneconomic

W-Pu Burning Options

	LANSCE	Green field	Green field
	66 % of beam	initial	expanded
	125 MWt	125 MWt	500 MWt
Capital			
Investment	\$ 56	\$101	\$129
Loan 6%, 12 years	<u>\$224</u>	<u>\$404</u>	<u>\$516</u>
Total	\$280 million	\$505 million	\$645 million
Income			
diesel	\$188 million/y	\$188 million/y	\$750 million/y
W-Pu (50 Kg/y)	00	00	00
tritium (600 g/y)	<u> 18 </u>	<u> 18 </u>	72 (2400 g/y)
Total*	\$206 million/y	\$206 million/y	\$822 million/y
Operations costs	\$124 million/y	\$150 million/y	\$600 million/y
Net income	\$ 82 million/y	\$ 56 million/y	\$222 million/y
Ann. Net/Investment	1.5	0.55	0.97
Value P/E ratio of 15 [#]	\$1.2 billion	\$0.84 billion	\$3.3 billion
Value/Invest. (5 years)	21	8	14

*100 % renewable diesel @ \$2.50/gal; Tritium @ \$30,000/g; # After 5 years 2022

GEM*STAR Cost Components for W-Pu Burning

	LANSCE	Green Field Phase I	Green Field Phase II Add
Elements	125 MWt	125 MWt	500 MWt
Building cost	\$ 000 million	\$75 million	\$ 25 million
Accelerator cost	000	150	450
Reactor cost	130	130	70
Diesel facility cost	<u>150</u>	<u>150</u>	<u>450</u>
Capital total	\$280 million	\$505 million	\$995 million
Annual operating costs			
⁷ LiF	\$ 1 million	\$ 1 million	\$ 4 million
W-Pu (PuF₃)	10	10	20
Labor	25	35	75
Gross receipts tax 7.5 %	20	20	65
Accelerator beam	30	0	0
Area A building and infra.	15	0	0
Debt retirement 6 % 30 year	rs 16	26	63
Electricity	0	3	9
Byproduct wood	<u>65</u>	<u>65</u>	<u>260</u>
Operation total	\$182 million	\$160 million	\$496 million

GEM*STAR Burn-up of 34 tons of W-Pu for Diesel

LANSCE Burn-up Demo 50 kg/y, 75 M gal./y and Start II tritium

20	LANL Area TA-21 00 kg/y 300 M ga	l/y	
SRS Aiken /SC 200 kg/y, 300 M gal./γ	Residual salt 12 % ²⁴² Pu retained by	200	ORNL Oak Ridge, TN O kg/y, 300 M gal/y
Hanford Tri Cities, WA 200 kg/y, 300 M gal./y	ADNA Corp. for future reburn Life cycle	20	INEL Idaho Falls, ID 0/kx/y, 300 M gal/y

34 tons W-Pu burned in 34 years; Diesel selling for \$122 B; Start II tritium; 5000 new ADNA jobs

Where is ADNA Corporation Headed with GEM*STAR

Demo of W-Pu burning at LANSCE for 600 g/y tritium for NNSA and 75 million gal/y of 100% renewable diesel for the DOD	2022
Eight standard 500-MWt GEM*STAR units each burning 200 kg/y of W-Pu at DOE/DOD green field sites for a total of 2.4 billion gal/y of 100 % renewable diesel for the DOD. 34 tons burned in 21 years	2027
NRC licensing for GEM*STAR for diesel sale into the commercial sector	2028
Operation of the first GEM*STAR on the site of a closed LWR at 500 MWt burning natural UF ₄ for 300 million gal/y	2029
Beginning conversion of LWR spent fuel from oxide to fluoride salt at the modified SRS MOX plant	2030
Operation of the first GEM*STAR for burning LWR spent fuel on an existing LWR site	2031
Completing the burning of 100,000 tons of U.S. LWR spent fuel in 600 GEM*STARs for 180 billion gal/y of 100 % renewable diesel and gasoline (all of U.S. liquid fuel consumption) from byproduct biomass	2071
Other potential GEM*STAR fuels include naval reactor spent fuel, ocean uran depleted uranium, and thorium	ium,

LANL-NNSA-DOD Benefits from LANSCE Accelerator

NNSA life-cycle cost for burning 34 tons of W-PuIn commercial LWR using SRS- MOX\$50 billionNo-burning storage at WIPP\$17 billionADNA Corporation\$00 billion

W-Pu Burning Options

	LANSCE	Green field	Green field
	66 % of beam	initial	expanded
	125 MWt	125 MWt	500 MWt
Capital			
Investment	\$56	\$101	\$129
Loan 6%, 12 years	<u>\$224</u>	<u>\$404</u>	<u>\$516</u>
Total	\$280 million	\$505 million	\$645 million
Income			
diesel	\$188 million/y	\$188 million/y	\$750 million/y
W-Pu (50 Kg/y)	00	00	00
tritium (600 g/y)	<u>18</u>	<u>18</u>	<u>72 (2400 g/γ)</u>
Total*	\$206 million/y	\$206 million/y	\$822 million/y
Operations costs	\$124 million/y	\$150 million/y	\$600 million/y
Net income	\$ 82 million/y	\$ 56 million/y	\$222 million/y
Ann. Net/Investment	1.5	0.55	0.97
Value P/E ratio of 15 [#]	\$1.2 billion	\$0.84 billion	\$3.3 billion
Value/Invest. (5 years)	21	8	14

*100 % renewable diesel @ \$2.50/gal; Tritium @ \$30,000/g; # After 5 years 2022