

Los Alamos County

Community Development Department

PLANNING & ZONING COMMISSION STAFF REPORT

Public Hearing Date:	March 28, 2018 – Postponed to April 11, 2018
Subject:	Case No. SUB-2018-005, A-19/Mirador Final Subdivision Plat
Applicant/Owner:	Scott Eddings, P.E., Agent for Adam Thornton, Owner
Case Manager:	Tamara Baer, Planning Manager

The Los Alamos County Planning and Zoning Commission (P&Z), at their meeting of March 28, 2018, postponed Case No. SUB-2018-005, A-19/Mirador Final Subdivision Plat, to the next P&Z meeting of April 11, 2018. The request to postpone was made by the Applicant in order to pursue further discussion with County staff in regard to the proposed Conditions of Approval.

County staff and the Applicant have reached agreement on all conditions. Revised recommended Conditions of Approval are provided below and represent clarifications of the original conditions.

A copy of the January 10, 2018 Amended Traffic Study, prepared by the Albuquerque engineering firm Bohannan Huston, is included in its entirety with this cover report. Pages 20 and 21 highlight the Conclusions and Recommendations of the study.

The suggested Motions, along with the revised recommended Conditions of Approval, are provided below. Please refer to the original staff report dated March 28, 2018 for the complete report and analysis.

Case No. SUB-2018-005: A-19/Mirador Final Subdivision Plat

Scott Eddings, P.E., agent for Adam Thornton, owner, requests Final Subdivision Plat approval to create 161 new residential lots and one commercial lot on Tracts A-19-A-1, A-19-A-2A and A-19-A-2B, being a part of the Ramon Vigil Grant. The land from which the new subdivision will be platted consists of three existing parcels. The parcel designated A-19-A-1, is zoned R-1-5 (Single-family residential) and consists of 34.35⁺ acres. The second parcel is A-19-A-2A, is zoned DT-NCO (Downtown - Neighborhood Center Overlay), and consists of 12.94⁺ acres. A third parcel, A-19-A-2B is also zoned DT-NCO, consists of 12.97⁺, and is owned by Los Alamos County. The subdivision will be located on the first two, privately owned tracts of land.

Motion on the Final Subdivision Plat

Motion Option 1:

I move to **approve** Case No. SUB-2018-005, a request for approval of Final Subdivision Plat, creating 161 new residential lots and one commercial lot pertaining to the Property as described, and known as A-19, or Mirador. I so move for the reasons stated in the staff report and per testimony at the public hearing, and subject to the conditions of approval.

Conditions of Approval:

- 1. The developer shall be responsible for future installation of a traffic signal and related equipment at the NM 4/Mirador/Sherwood Boulevard intersection if engineering warrants are met. This shall not preclude the developer from seeking financial participation from other sources.
- 2. The developer shall provide an updated Traffic Impact Analysis (TIA) at the time of any of the following:
 - Site Plan submittal for Commercial Tract D, or any portion thereof; or
 - As may be required by the County Engineer based on traffic operational performance, safety and/or capacity issues upon completion of Phases I, II or III of residential build-out; or
 - As may be required by the New Mexico Department of Transportation.
- 3. Applicant's engineer shall address all County Engineer's Conditions of Approval of Preliminary Plat (Exhibit A), and additional comments in the County Engineer's memorandum dated February 28, 2018 (Exhibit B) with submittal of construction drawings for Building Permit. Based on input from the U.S. Army Corps of Engineers, if drainage outfalls are below the ordinary high water mark, then a USACE nationwide permit will be required.
- 4. A financial guarantee, approved by the county attorney, shall be provided in an amount sufficient to cover the costs of construction of all public improvements and public utilities. The utilities manager and county engineer shall certify that the amount is adequate.
- 5. Prior to recording the plat, the developer shall provide a written statement describing the date for commencement and completion of construction, by phase, and a chart indicating the approximate construction period for each of the utilities, and public and private roadway improvements. Reasonable amendments or changes to such phasing shall be accepted by the County.
- 6. ...

Motion Option 2:

I move to **deny** Case Nos. SUB-2018-005, a Final Subdivision Plat for 161 new residential lots, and one commercial lot, pertaining to the Property as described, and known as A-19, or Mirador, finding that the proposal has failed to meet the Los Alamos County Code of Ordinances, Chapter 16 – Development Code review criteria in Sec. 16-153 – Subdivision, for the following reason(s):

1. ...

Finally, it is noted that this hearing was not required to be nor was it re-noticed. The Los Alamos County Code of Ordinances, Chapter 16 – Development Code, Article V. – Public Notice, Sec. 16-192. - Planning and zoning commission public hearing requirements. (c) [reads in part]: "A public hearing for which notice has been given as set forth in this section, may be rescheduled to a later date, on a day not more than 21 days from the original scheduled hearing, without repetition of notice aforesaid, but notice of the new date, time and place for the rescheduled hearing shall be prominently displayed or otherwise communicated at

the originally scheduled hearing." The new hearing date of April 11, 2018 was announced at the previous meeting.

Exhibits

- Exhibit 1: Amended White Rock Tract A-19-a Traffic Impact Study, dated January 10, 2018
- Exhibit 2: March 28, 2018 Staff Report to P&Z for Case No. SUB-2018-005, A-19/Mirador Final Subdivision Plat

AMENDED WHITE ROCK TRACT A-19-a WHITE ROCK, NM TRAFFIC IMPACT STUDY

INITIAL REVIEW SUBMITTAL

JANUARY 10, 2018

Prepared For: Huitt Zollars, Inc 333 Rio Rancho Drive Suite 101 Rio Rancho, NM 87124

Prepared By:

Bohannan 🔔 Huston

Engineering Spatial Data Advanced Technologies 1 1 1 1

AMENDED WHITE ROCK TRACT A-19-a WHITE ROCK, NM TRAFFIC IMPACT STUDY

INITIAL REVIEW SUBMITTAL

JANUARY 10, 2018

PREPARED BY:

BOHANNAN HUSTON, INC. 7500 JEFFERSON ST NE COURTYARD ONE ALBUQUERQUE, NM 87109

PREPARED FOR:

HUITT ZOLLARS, INC 333 RIO RANCHO DRIVE SUITE 101 RIO RANCHO, NM 87124

Prepared By:

ERIC J. WRAGE, P.E., P.T.O.E DATE

P:\20180337\TRANS\Study\Report-Production\Report\WRMP_A19_TIA_Rev_1a.docx

1.

WHITE ROCK MASTER PLAN TRACT A-19-a WHITE ROCK, NM AMEMDED TRAFFIC IMPACT STUDY TABLE OF CONTENTS

T.	IN.	TRODUCTION	PAGE
	A.	Study Purpose	1
	В.	Study Procedure	1
II.	ΕX	(ISTING AREA CHARACTERISTICS	1 A
	Α.	General Area Characteristics	4
	В.	Existing Traffic Volumes	4
	C.	Existing Levels of Service	5
III.	BA	ACKGROUND TRAFFIC PROJECTIONS	8
	Α.	No-Build Traffic Projections	8
	В.	No-Build Intersection Capacity Analysis	
IV.	PR	ROPOSED SITE CHARACTERISTICS	11
	А.	Proposed Development	11
	В.	Trip Generation	
	C.	Trip Distribution and Assignment	12
V.	BU	JILD TRAFFIC ANALYSIS	47
	А.	Build Traffic Volumes	
	υ.	Results and Discussion	17
	C.	Vehicle circulation	
	D.	Pedestrian Circulation	
VI.	CO	INCLUSIONS AND RECOMMENDATIONS	
A. B. A. B. C. V. BL A. B. C. D.	А.	Conclusions	20
	В.	Recommendations	21

FIGURES

i

TABLES

ABLE 1 – LOS DEFINITIONS 5
ABLE 2 – EXISTING SIGNALIZED INTERSECTION CAPACITY ANALYSIS RESULTS 5
ABLE 3 – EXISTING UNSIGNALIZED INTERSECTION CAPACITY ANALYSIS RESULTS
ABLE 4 – NO BUILD SIGNALIZED INTERSECTION CAPACITY ANALYSIS RESULTS 8
ABLE 5 – NO BUILD UNSIGNALIZED INTERSECTION CAPACITY ANALYSIS RESULTS
ABLE 6 – TRIP GENERATION12
ABLE 7 – BUILD SIGNALIZED INTERSECTION CAPACITY ANALYSIS RESULTS17
ABLE 8 – BUILD UNSIGNALIZED INTERSECTION RESULTS

APPENDICES

APPENDIX A SR4 SIGNING AND STRIPING PLAN APPENDIX B EXISTING INTERSECTION CAPACITY ANALYSIS APPENDIX C FORECAST TURNING MOVEMENTS APPENDIX D NO BUILD INTERSECTION CAPACITY ANALYSIS APPENDIX E BUILD INTERSECTION CAPACITY ANALYSIS

Bohannan 🛦 Huston

I. INTRODUCTION

This study is an amendment to the traffic study submitted July 14, 2011. This study evaluates the currently proposed land use concept for what is known as Tract A-19-a, a 60-acre tract of land in White Rock conveyed from the Federal government to the County of Los Alamos. This conveyance included the land which SR 4 is located on across the site. A vicinity map is shown in Figure 1. Detailed site determination has not been completed at this time, however a revised land use plan has been developed. The revised land use plan is shown in Figure 2.

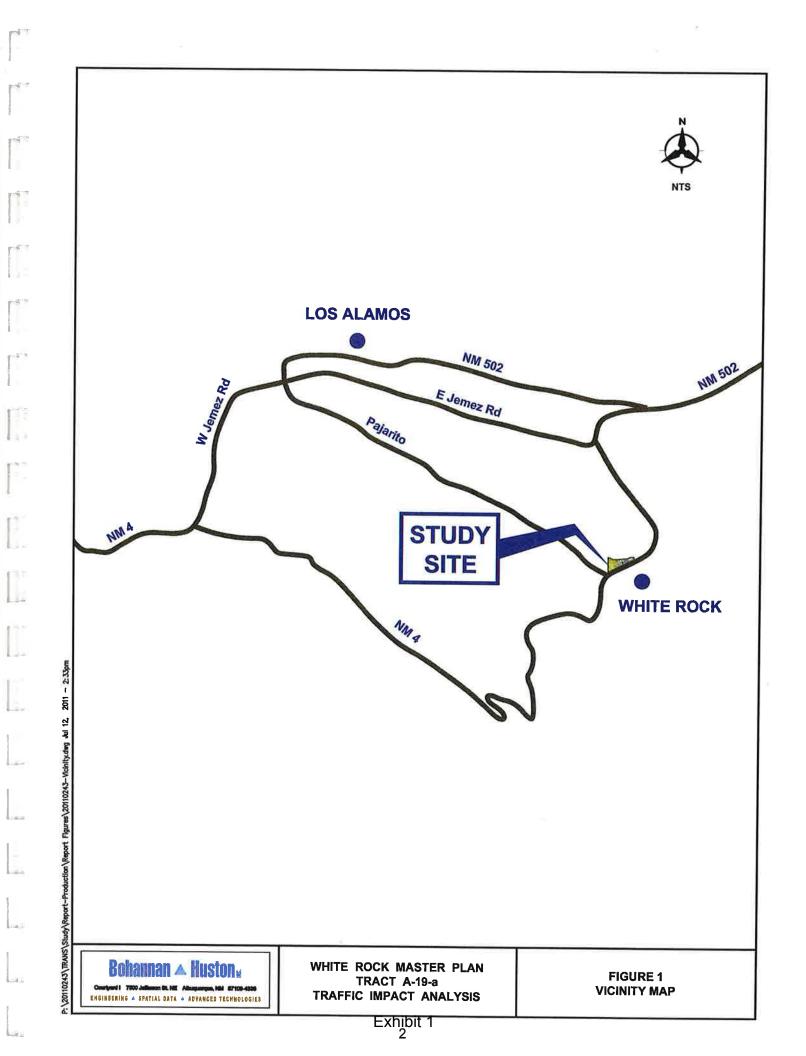
A. STUDY PURPOSE

The purpose of the traffic study is to determine the impacts of the proposed development on the existing street network and to recommend any mitigation measures that may be necessary to support the additional traffic generated by the proposed development.

B. STUDY PROCEDURE

The study was conducted using established traffic engineering procedures. The study will include analysis of the following intersections:

- NM State Route (SR) 4 and Rover Boulevard (full access signalized)
- State Route 4 and Sherwood Boulevard/Future Entrance 1 (full access unsignalized)
- State Route 4 and La Vista Drive/Future Entrance 2 (full access unsignalized)
- State Route 4 and Pajarito Road/Grand Canyon Drive (signalized)


The intersection evaluations include analysis for the AM and PM peak hours for the following traffic conditions:

- Existing traffic
- Future Completion Year without proposed development or future access points (No Build)
- Future Completion Year with full buildout of the site

Previous traffic studies performed on SR 4, including the August 24, 2010 *Final Report Phase I-A/I-B Evaluation of Alternatives Report, NM 4 and Canada del Buey Multi-Use Path Alignment Study White Rock, New Mexico* have found that traffic growth has been flat on NM 4 for the past 10 years, and recent data finds this has continued to be true.

1

P:\20180337\TRANS\Study\Report-Production\Report\WRMP_**任实们的转**v11a.docx

II. EXISTING AREA CHARACTERISTICS

A. GENERAL AREA CHARACTERISTICS

The site is located in the northeast corner of the intersection of SR 4 and Sherwood Boulevard, and continues west to approximately Pajarito Road.

SR 4 has recently been reconstructed as a 2-lane road (1 in each direction) with medians to provide left turn lanes at key intersections. A climbing lane begins at Sherwood Boulevard that provides two westbound through lanes with the climbing lane dropping as a free right turn lane onto Pajarito Road. Pertinent pages from the SR 4 reconstruction projects striping and signing plan are included in Appendix A. The speed limit on SR 4 is 35 MPH. The 2015 NMDOT Transportation Information Management System (TIMS) shows that SR 4 carries approximately 8,800 vehicles per day (vpd) near the site (2008 data showed 9,400 vpd).

Pajarito Road and Grand Canyon Drive is a signalized intersection on the east end of the study area. Pajarito Road is a primary access point to Los Alamos National Laboratory to the north and Grand Canyon Drive is a local street that provides access to White Rock neighborhoods to the south.

La Vista Street is a stop controlled T-intersection that provides access to White Rock neighborhoods to the south. The intersection with La Vista is also a future entrance to the proposed development.

Sherwood Boulevard is currently a T-intersection controlled by a Stop sign that provides access to White Rock neighborhoods to the south and is also a primary entrance to the local Smith's Food and Drug Center and post office. Sherwood Boulevard is also the entrance to the new Visitor's Center. Sherwood is also expected to be an entrance to the proposed development.

Rover Boulevard is a traffic signal controlled intersection that serves White Rock residential development to the south and a Phillips 66 gas station on the north.

B. EXISTING TRAFFIC VOLUMES

Traffic counts for the intersections analyzed in the study area were taken from the August 24, 2010 *Phase I-A/I-B Evaluation of Alternatives Report, NM 4 and Canada del Buey Multi-Use Path Alignment Study White Rock, New Mexico Final Report.* This is considered appropriate due to the flat traffic growth on SR 4 over the past 10 years. Figure 3 is a summary of the existing peak hour traffic volumes, existing laneage, turning

4

White Rock Tract A-19-a Master Plan Amended Traffic Impact Study

movements, and intersection levels of service. The existing conditions analysis assumes construction of the improvements to SR 4.

C. EXISTING LEVELS OF SERVICE

The Sixth Edition of the Highway Capacity Manual (HCM) defines Level of Service (LOS) for signalized and un-signalized intersections as follows:

	Table 1 – LOS Definitions										
Level of Service	Signalized (sec/veh)	Definition	Un-Signalized (sec/veh)								
А	<10	Most vehicles do not stop.	<10								
В	>10 and <20	Some vehicles stop.	>10 and <15								
С	>20 and <35	Significant numbers of vehicles stop.	>15 and <25								
D	>35 and <55	Many vehicles stop.	>25 and <35								
E	>55 and <80	Limit of acceptable delay.	>35 and <50								
F	>80	Unacceptable delay.	>50								

LOS D is generally considered acceptable in urban areas and is the County's design standard for major intersections.

Existing intersection traffic volumes were analyzed using intersection methodology from the Sixth Edition and the *2000 Highway Capacity Manual* (HCM). Synchro version 10 was used to perform the level of service calculations. Individual intersection output is included in

Appendix B. The signalized intersection results are summarized in Table 2.

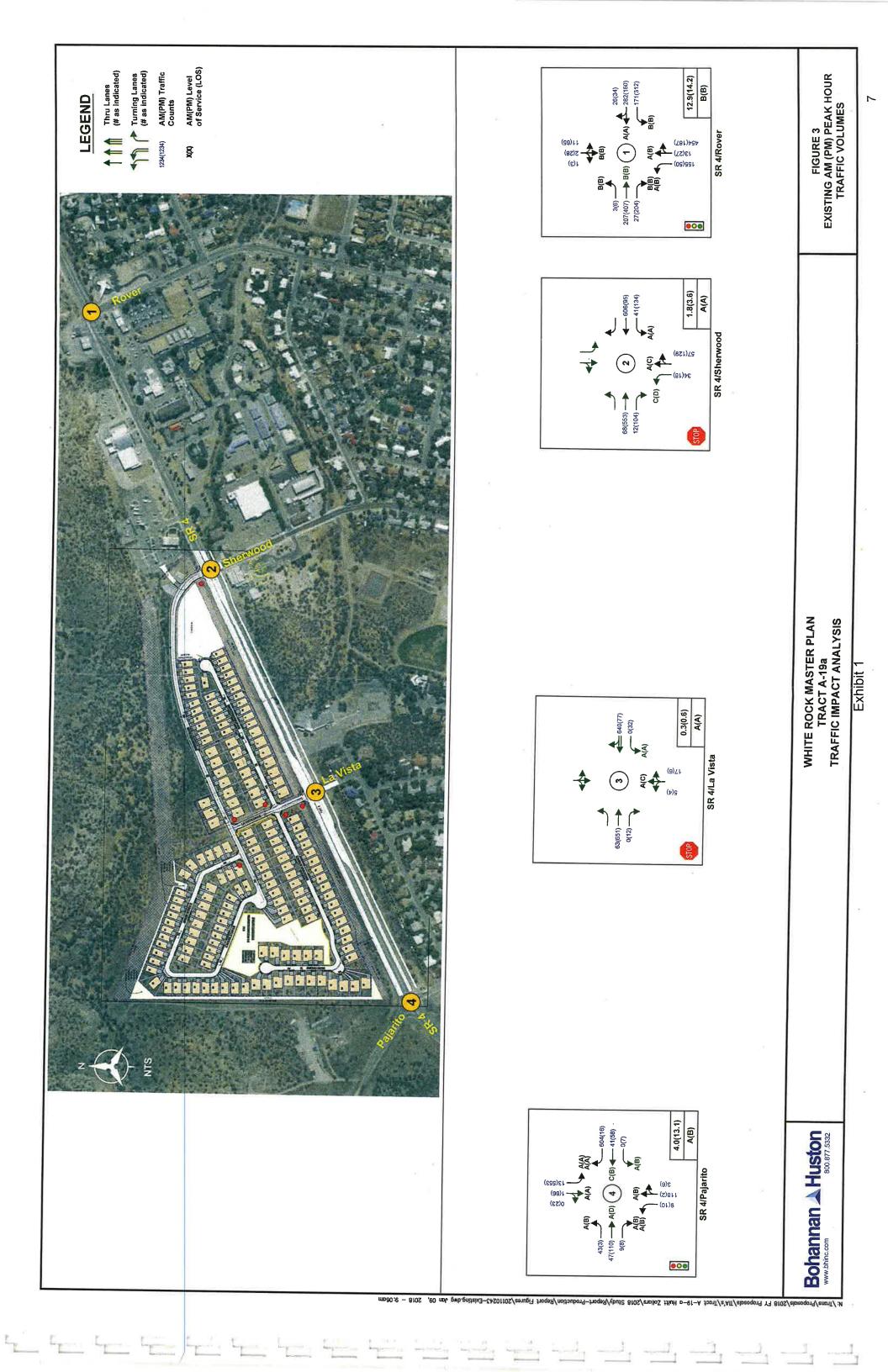

The results indicate that both signalized intersections operate at an acceptable level of service.

Table 2 – Existing Signalized Intersection Capacity Analysis Results										
		AM Peak		PM Peak						
Signalized Intersections	Delay (sec.)	V/C	LOS	Delay (sec.)	V/C	LOS				
SR 4 and Rover	12.9	0.79	В	14.2	0.79	В				
SR 4 and Pajarito	4.0	0.64	A	13.1	0.83	В				
 some movements LOS E some movements LOS F 	•									

The unsignalized intersection results are summarized in Table 3. Both unsignalized intersections operate at acceptable levels of service, although the high eastbound volume in the PM peak hour does result in LOS D for the northbound left turn at Sherwood Boulevard.

Table 3 – Existing Unsignalized Intersection Capacity Analysis Results										
		AM	Peak		PM Peak					
Intersection/Movement	Delay	v/c	Queue* (ft)	LOS	Delay v/c Queu (ft)			LOS		
SR 4 & Sherwood										
WB Left	7.5	0.03	25	A	9.9	0.16	25	Α		
NB Left	19.5	0.13	25	С	25.5	0.10	25	D		
NB Through/Right	8.9	0.06	25	Α	15.0	0.28	50	С		
SR 4 & La Vista										
WB Left	0.0	0.00	0	Α	9.3	0.04	25	А		
NB Approach	9.5	0.03	25	A	15.6	0.03	25	С		
* - HCM 95 th percentile queue ro	ounded to	o next 2	5-foot incre	ement						

P:\20180337\TRANS\Study\Report-Production\Report\WRMPE**

III. BACKGROUND TRAFFIC PROJECTIONS

A. NO-BUILD TRAFFIC PROJECTIONS

As mentioned previously, traffic volume growth in Los Alamos County has been flat for a number of years; however, two developments are planned for the corridor that will increase traffic levels. The first is the Chemistry and Metallurgy Research Replacement project (CMRR) at LANL that will have access via Pajarito Road. A traffic impact analysis was performed for the CMRR in 2008. The traffic volumes expected to be generated by the CMRR and added to SR 4 are shown in Appendix C. Additionally, a new visitor center complex is located north of SR 4 near the Sherwood Boulevard intersection and will share the access with the proposed Tract A-19-a development. The visitor complex is not expected to generate a high amount of traffic during the peak hours; however, a small number of trips for employees was assumed and is also added into the background traffic as shown in Appendix C. Figure 4 on page 10 shows the No Build traffic volumes, number of lanes, and level of service.

The No Build analysis also assumes that the proposed development and future access points are not constructed.

B. NO-BUILD INTERSECTION CAPACITY ANALYSIS

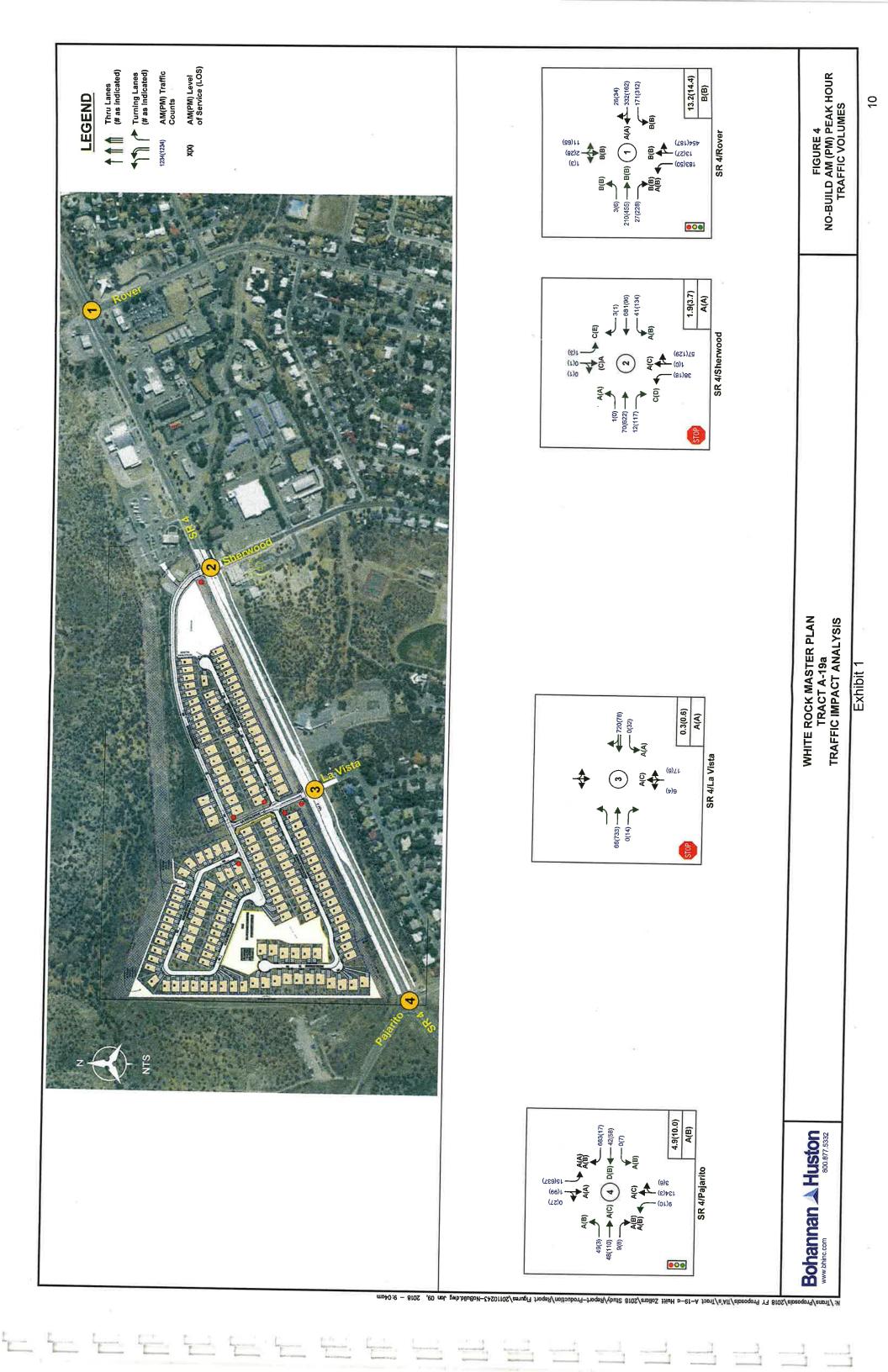
The intersections were again analyzed using Synchro version 10. Synchro output is included in Appendix D. The signalized intersection results are summarized in Table 4.

The intersections again operate at acceptable levels of service.

As will be shown in the next section, the intersection of SR 4 and Sherwood Boulevard operates with high delay as an unsignalized intersection and therefore was evaluated as a signalized intersection. The Sherwood intersection will operate at acceptable level of service with a traffic signal.

		AM Peak		PM Peak				
Signalized Intersections	Delay (sec.)	V/C	LOS	Delay (sec.)	V/C	LOS		
SR 4 and Rover	13.2	0.71	В	14.4	0.80	В		
SR 4 and Pajarito	4.9	0.74	A	10.0	0.60	В		

Table 5 is a summary of the unsignalized intersection No-Build results. Due to the high volume of traffic on SR 4 the Sherwood Boulevard minor street left turns operate at high



White Rock Tract A-19-a Master Plan Amended Traffic Impact Study

delay, with the southbound left operating at LOS E with 44 seconds of delay in the PM peak hour. A Peak Hour Volume traffic signal warrant analysis was performed for the no build traffic volumes and is included in Appendix D. A traffic signal is not warranted due to volume or delay.

	1	lo Buil	d AM Peak		acity Analysis Results				
Intersection/Movement	Delay	v/c	Queue* (ft)	LOS	Delay	v/c	Queue* (ft)	LOS	
SR 4 & Sherwood									
EB Left	9.2	0.00	0	А	0.0	0.00	0	A	
WB Left	7.5	0.03	25	Α	10.3	0.18	25	В	
NB Left	22.3	0.16	25	С	28.9	0.12	25	D	
NB Through/Right	9.1	0.07	25	А	16.5	0.31	50	С	
SB Left	21.3	0.01	0	С	44.2	0.03	25	Е	
SB Through/Right	0.0	0.00	0	Α	18.9	0.01	0	С	
SR 4 & La Vista									
WB Left	0.0	0.00	0	А	9.6	0.04	25	А	
NB Approach	9.7	0.03	25	А	17.2	0.04	25	С	
* - HCM 95 th percentile queue r	ounded t	o next 2	25-foot incr	ement					

9

IV. PROPOSED SITE CHARACTERISTICS

A. PROPOSED DEVELOPMENT

The initial land use plan was developed with community input and market analysis. The land use plan anticipates 160 single family detached housing with 3.7 acres of future commercial development. As this commercial development is unknown at this time, it was assumed to be specialty retail with a 0.25 floor-to-area ratio, or 40,293 square feet.

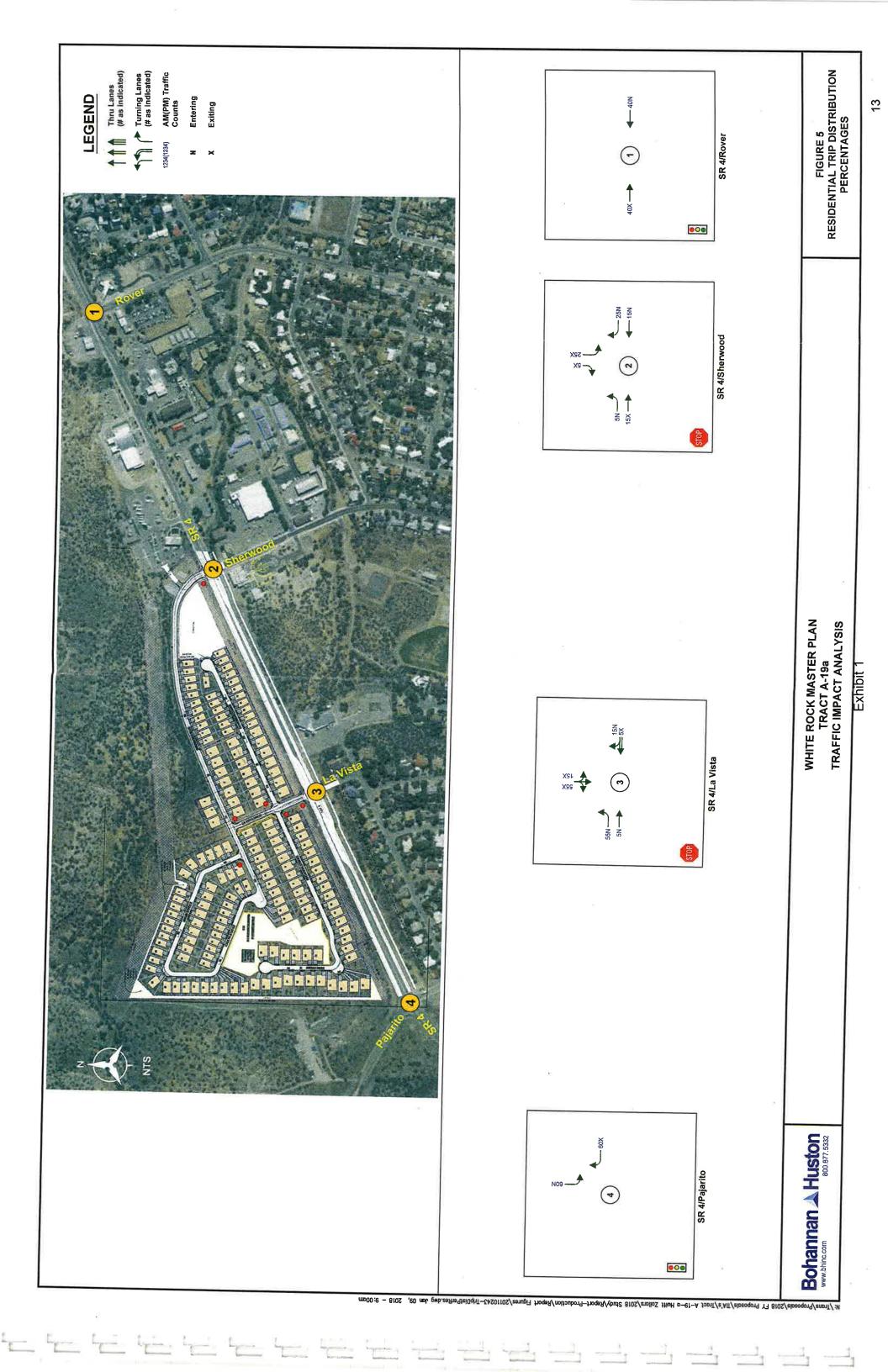
B. TRIP GENERATION

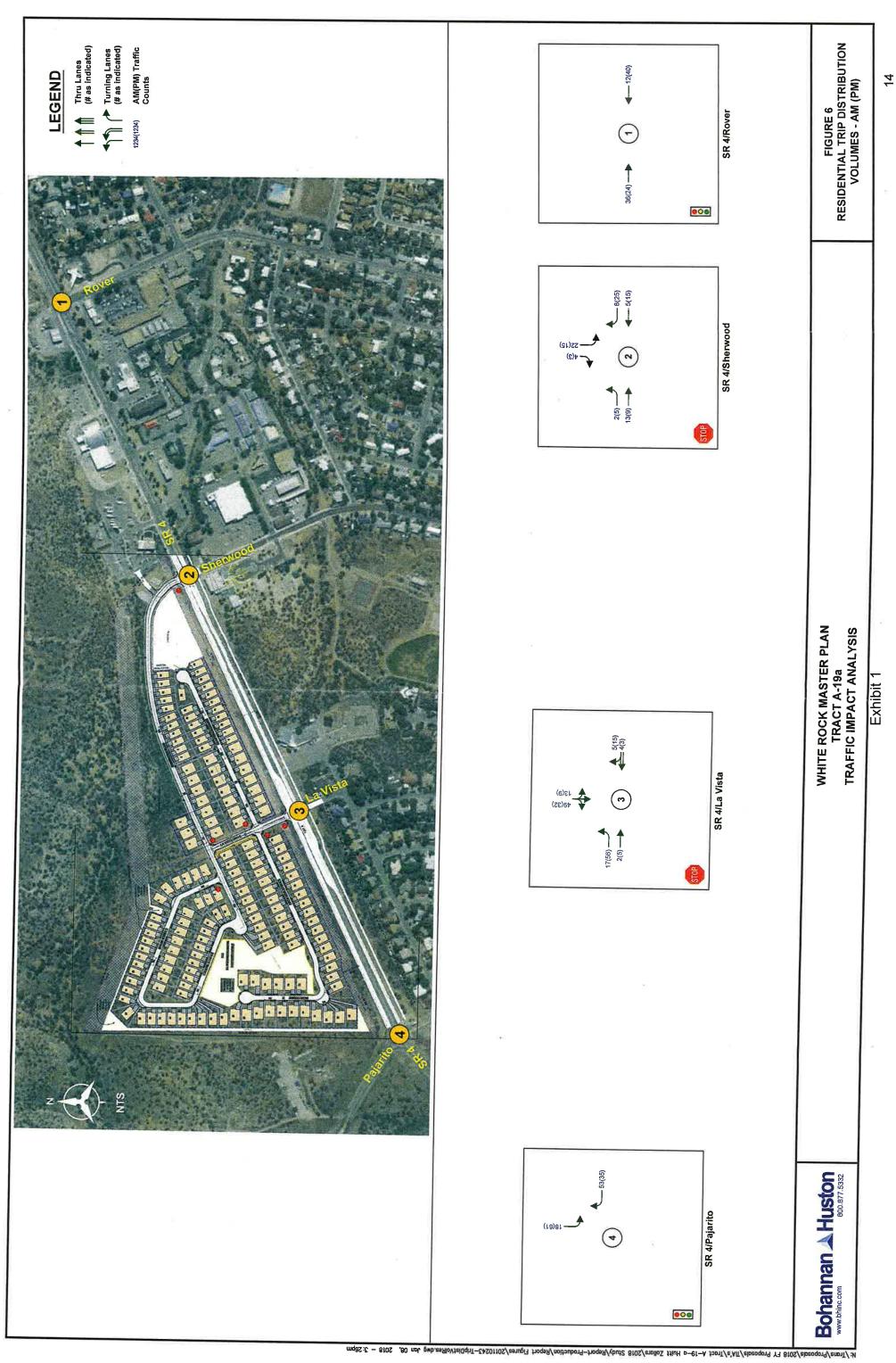
Generated trips are broken down into three types; 1) primary, 2) pass-by trips, and 3) diverted link. The *Trip Generation* report defines these trips as follows:

- Primary Trips These trips are made for the specific purpose of visiting the generator. The stop at that generator is the primary reason for the trip. For example, a home to shopping to home combination of trips is a primary trip set.
- **Pass-by Trips** These trips are made as intermediate stops on the way from an origin to a primary trip generation. Pass-by trips are attracted from the traffic passing the site on an adjacent street that contains direct access to the generator site. These trips do not require a diversion from another roadway. For example, stopping at the store on the way home from work is an example of a pass-by trip. No pass-by trips were assigned to this development.
- Diverted Linked Trips These trips are attracted from the traffic volume on the roadway within the vicinity of the generator, but which require a diversion from that roadway to another roadway to gain access to the site. The roadways could include streets or freeways adjacent to the generator, but without access to the generator. For this study, the diverted link trips have been included in with the primary trips.
 All trips to the site were considered primary trips.

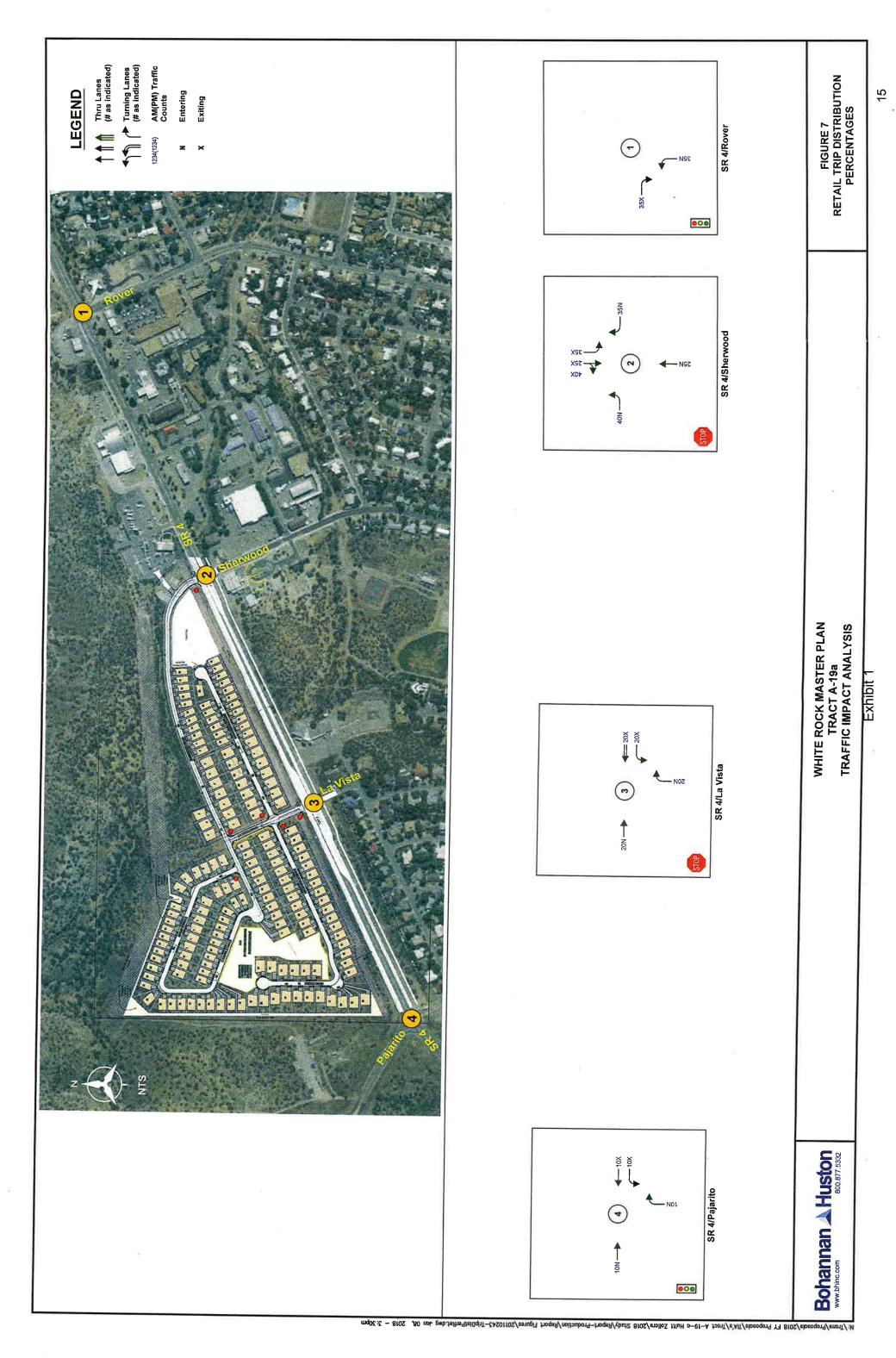
11

Trips generated by the proposed development are summarized as follows:

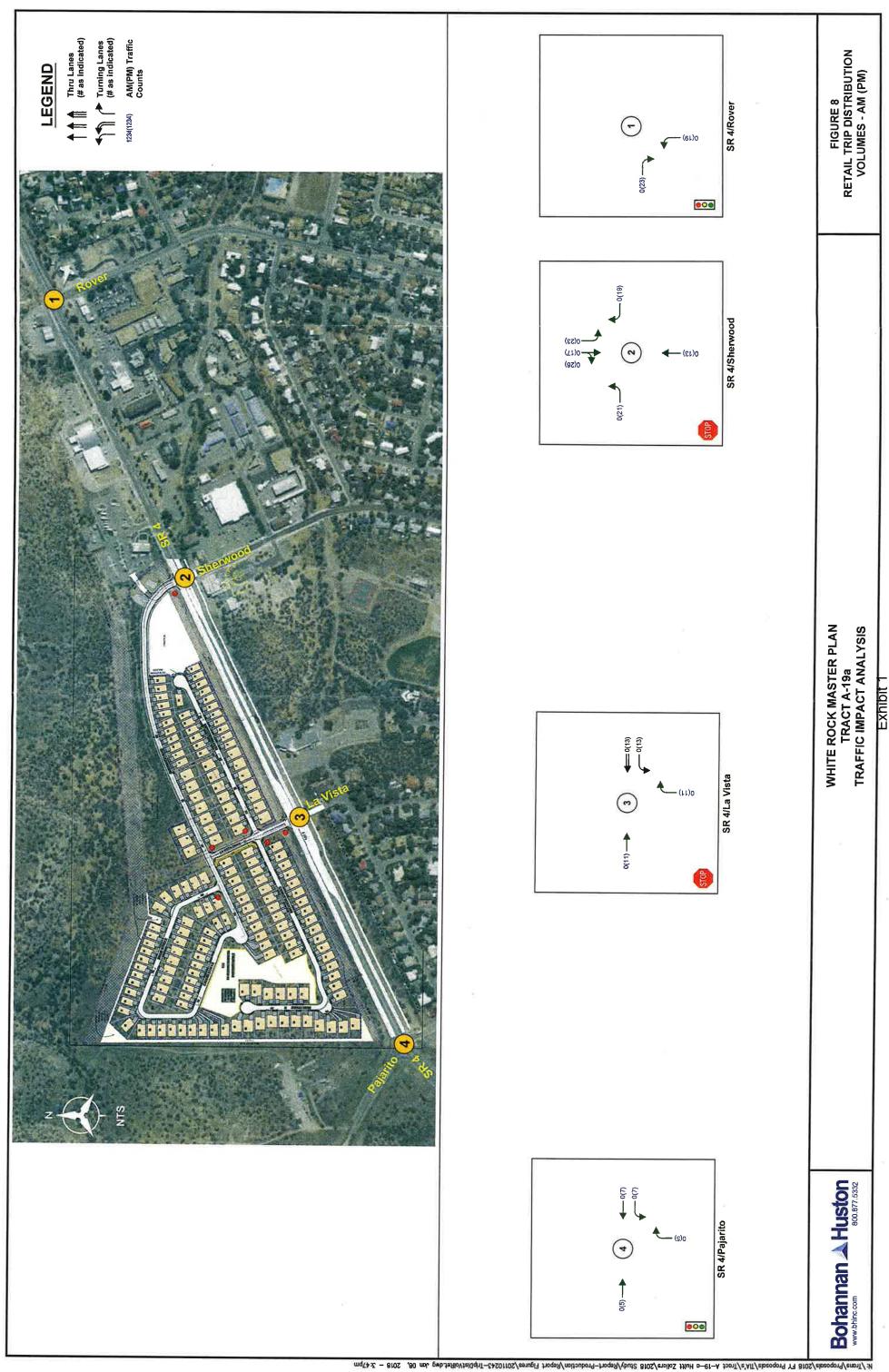

White Rock Tract A-19-a Master Plan Amended Traffic Impact Study


Table 6 – Trip Generation											
Land lies	ITE Land		24 Hour Two-	AM Peak Hour***		PM Peak Hour***					
Land Use	Use Code	Size	Way Volume* *	Enter	Exit	Enter	Exit				
Single Family Detached Housing	210	160 DU	1,603	30	89	101	59				
Specialty Retail	814	40.3 TGLA	1,762	0	0	53	66				
TGSF – thousand gross leasable area											

C. TRIP DISTRIBUTION AND ASSIGNMENT


Residential trip distribution and assignment was based on the proximity of the surrounding communities where employment opportunities are located, as the peak hour traffic from residences is expected to be job related commute trips. The standard "gravity" model was used where the trip distribution is assumed to be proportional to the population of the community and inversely proportionally to the distance to the community. The residential trip distribution percentages are shown in Figure 5 on page 13. The residential trip assignment of the total project trips to the individual intersections is shown on Figure 6 on page 14.

The retail trip distribution was anticipated to be local White Rock traffic only. The percentage trip distribution for the retail trips are shown in Figure 7 on page 15, with the peak hour trips assigned to the individual intersection is shown in Figure 8 on page 16.



V. BUILD TRAFFIC ANALYSIS

The following section will discuss the results of the build traffic analysis.

A. BUILD TRAFFIC VOLUMES

Based on the trip distribution and assignments discussed above, the estimated traffic generated by the proposed site development was then added to the No-Build traffic projections. Details of the Build traffic volume computations are included in Appendix C.

Figure 9, page 19, is a summary of the Build Peak hour traffic projections, lane geometry, and movement and intersection level of service for the build year analysis

B. RESULTS AND DISCUSSION

The intersections were again analyzed using Synchro version 10. Table 7 and Table 8 show the results for the signalized and unsignalized intersections, respectively. The Synchro output is included in Appendix E.

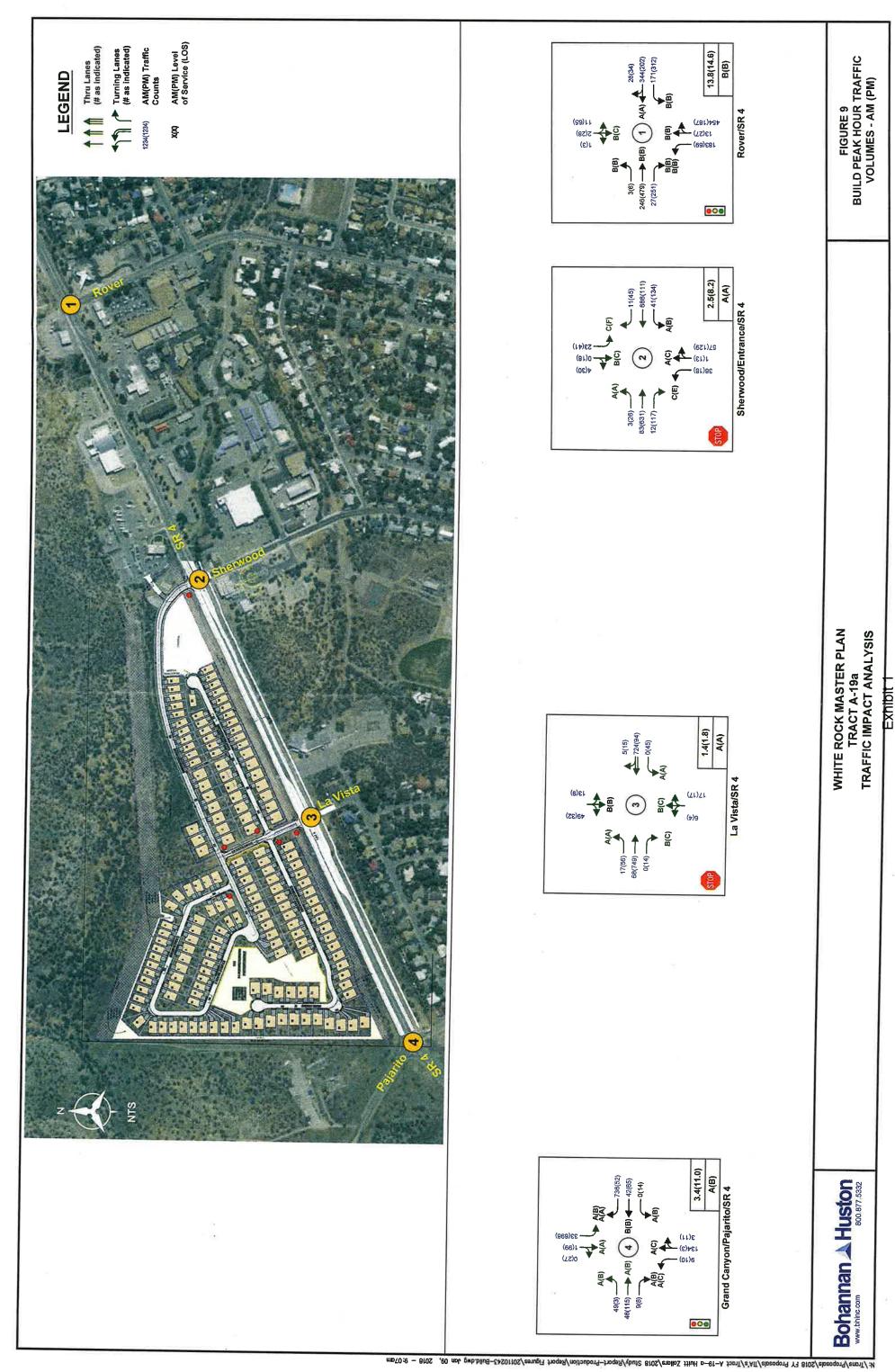
It can be seen from the table that the forecast build volumes will operate at an acceptable level of service. As in the No Build, the intersection of SR 4 and Sherwood/Entrance operates at a poor level of service in the PM Peak Hour, so it was also evaluated as a signalized intersection.

Table 7 – Build Signalized Intersection Capacity Analysis Results											
	Bu	ild AM Pe	ak	Build PM Peak							
Signalized Intersections	Delay (sec.)	V/C	LOS	Delay (sec.)	V/C	LOS					
SR 4 and Rover	13.8	0.70	В	14.6	0.80	В					
SR 4 and Pajarito	3.4	0.51	A	11.0	0.75	В					
SR 4 & Sherwood	23.4	0.90	С	21.9	0.89	С					
 some movements LOS E some movements LOS F 		lí		J							

The SR 4 and Sherwood/Entrance intersection will operate at acceptable level of service as a signalized intersection. The Peak Hour Volume traffic signal warrant analysis is included in Appendix E. The warrant analysis indicates that the intersection does not warrant a traffic signal due to volume or anticipated delay, however a traffic signal would be beneficial for pedestrians.

Table 8 – Build Unsignalized Intersection Results										
		Build /	AM Peak		Build PM Peak					
Intersection/Movement	Delay	v/c	Queue* (ft)	LOS	Delay	v/c	Queue* (ft)	LOS		
SR 4 & Sherwood										
EB Left	9.2	0.01	0	A	7.6	0.02	25	Α		
WB Left	7.5	0.03	25	A	10.4	0.18	25	В		
NB Left	23.6	0.18	25	С	41.8	0.17	25	Е		
NB Through/Right	9.2	0.07	25	A	21.0	0.41	50	С		
SB Left	24.0	0.12	25	С	107.2	0.59	75	F		
SB Through/Right	13.7	0.01	0	В	20.4	0.18	25	С		
SR 4 & La Vista										
EB Left	9.5	0.02	25	Α	7.6	0.04	25	Α		
WB Left	0.0	0.00	0	Α	9.8	0.06	25	А		
NB Approach	10.1	0.03	25	В	17.9	0.08	25	В		
SB Approach	14.3	0.15	25	В	14.4	0.10	25	С		
* - HCM 95 th percentile queue rou	unded to	next 25	-foot increi	ment						

All of the unsignalized intersections, except SR 4 and Sherwood/Entrance intersection, are shown to operate at acceptable levels of service in the Build scenario.


C. VEHICLE CIRCULATION

The site provides excellent vehicular circulation. Most areas have multiple access locations and can easily reach a driveway onto SR 4.

On-street bicycle lanes are recommended on the spine infrastructure/main road entrance to the development, as well as the connector roads to SR 4.

D. PEDESTRIAN CIRCULATION

Pedestrian paths are located on the perimeter of the site and throughout the site. Sidewalks will be provided along all streets, along with pedestrian crossings throughout the site. The pedestrian crossings in the mixed-use area surrounding the plaza are to be Portland grey textured concrete crosswalks, but will not be raised. The texture alone is considered sufficient to reduce vehicular travel speeds. Other crosswalks in the development will be traditional painted crosswalks.

VI. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The existing signalized intersections at SR 4 and Rover and SR 4 and Pajarito will perform at acceptable levels of service in the existing, no-build and build scenarios.

The existing unsignalized intersection studied at SR 4 and La Vista will operate at acceptable levels of service in the existing, no-build and build scenarios.

The northbound-to-westbound left turn movement at the intersection of SR 4 and Sherwood operates at level of service D with an average delay of 25.5 seconds in the existing condition. This same movement will operate at LOS D with an average delay of 28.9 seconds in the no-build scenario PM peak hour and at LOS E with approximately 42 seconds of average delay in the build PM peak hour. In the build condition, the southboundto-eastbound left at the SR 4 and Sherwood intersection will operate at LOS F with an average delay of 107 seconds.

The delays for these movements are expected to decrease slightly with the expected use of "two-stage gap" maneuvers. This is when the driver performs the left turn in two-stages, once to cross the near side traffic lane and pause in the median until a gap is available in the far side traffic lane. Not all drivers are comfortable with this maneuver and it is expected that there will be substantial delays for some motorists. The two-stage gap maneuver is not expected be of much benefit for the Sherwood southbound left in the PM peak hour due to high amount of eastbound traffic. However, the volume at this intersection does not satisfy the Manual of Uniform Traffic Control Devices Peak Hour Volume Traffic Signal Warrant criteria. If a traffic signal were to be installed at this location the level of service would LOS B.

The high volume of traffic will impact the ability of pedestrians to cross SR 4 and a traffic signal will promote the viability of pedestrians to walk to the commercial center, a key objective of the Master Plan.

The number of westbound right turns at the entrances does not require right turn deceleration lanes per the NMDOT *State Access Management Manual* Criteria except for Sherwood which had a right turn lane constructed as part of the NMDOT SR 4 reconstruction project. The La Vista entrance can be considered a multi-lane highway due to the climbing/auxiliary lane that drops at Pajarito Road and the right turn volume does not meet the requirements for right turn deceleration lanes.

B. RECOMMENDATIONS

At the time of the original study, the NMDOT SR 4 reconstruction project was to construct the underground conduit to allow for signalization of the Sherwood and La Vista intersections in the event that these traffic signals are warranted due to volume or delay reasons.

It is recommended that the delays at these intersections be monitored to determine if the delay is excessive or other operational problems arise. It is not recommended to install the traffic signals initially as they are not warranted by volume or by delay, based on the forecast volumes and predicted delay.

The number of westbound right turns at the entrances does not require right turn deceleration lanes per the NMDOT *State Access Management Manual* Criteria except for Sherwood which has a right turn lane that was constructed as part of the NMDOT SR 4 reconstruction project. The other entrance can be considered multi-lane highways due to the climbing/auxiliary lane that drops at Pajarito Road and do not meet the NMDOT requirements for right turn deceleration lanes.

On-street bicycle lanes are recommended on the spine infrastructure/main road entrance to the development, as well as the connector roads to SR 4.

Pedestrian paths are recommended as shown in the site plan and are located on the perimeter of the site and throughout the site. Sidewalks are recommended along all streets, along with pedestrian crossings throughout the site. The pedestrian crossings in the mixeduse area surrounding the plaza are recommended to be Portland grey textured concrete crosswalks, but not recommended to be raised crosswalks due to snow removal. The texture alone is considered sufficient to reduce vehicular travel speeds. Other crosswalks in the development are recommended to be traditional painted crosswalks.

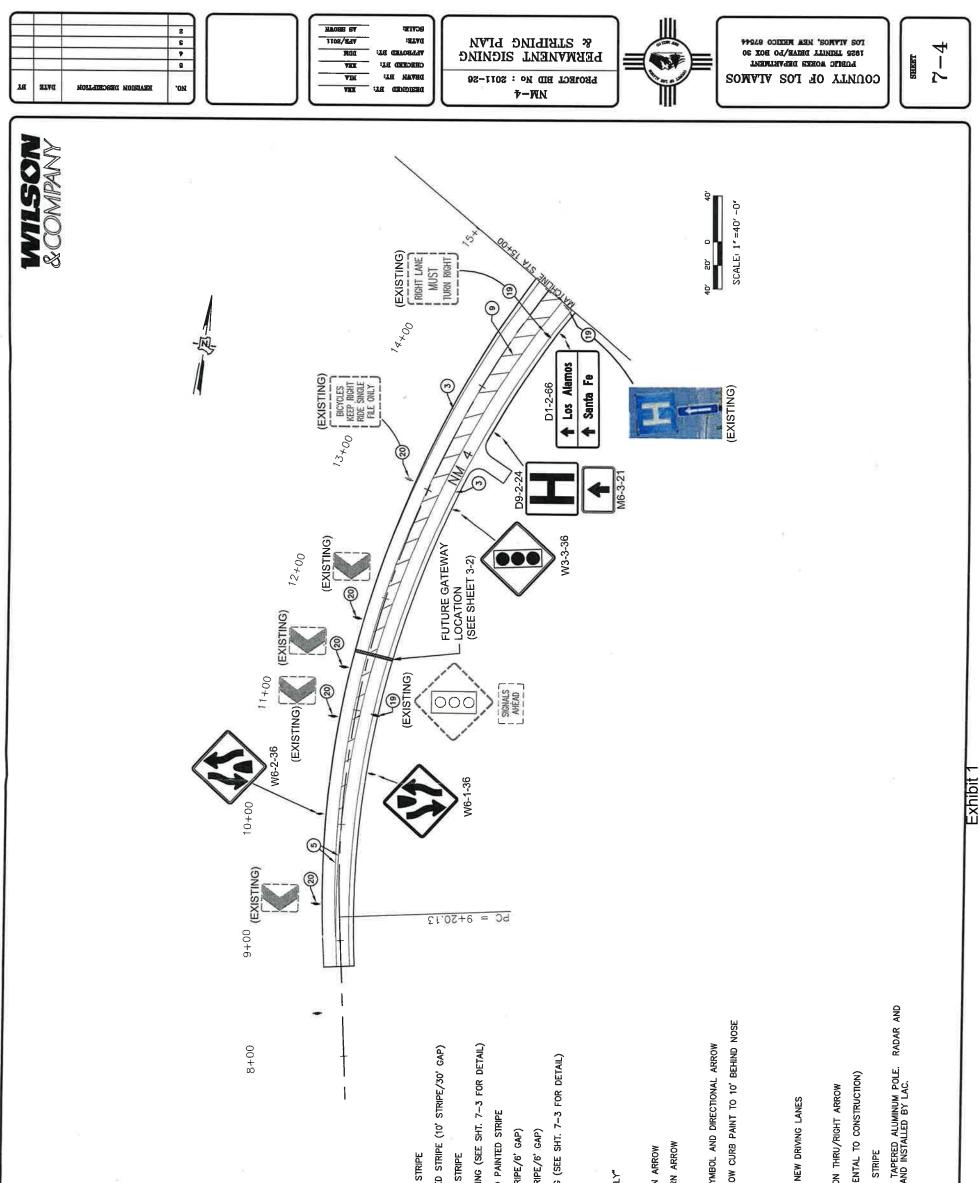
Appendix A SR4 Signing and Striping Plan

143

ľ

Γ.

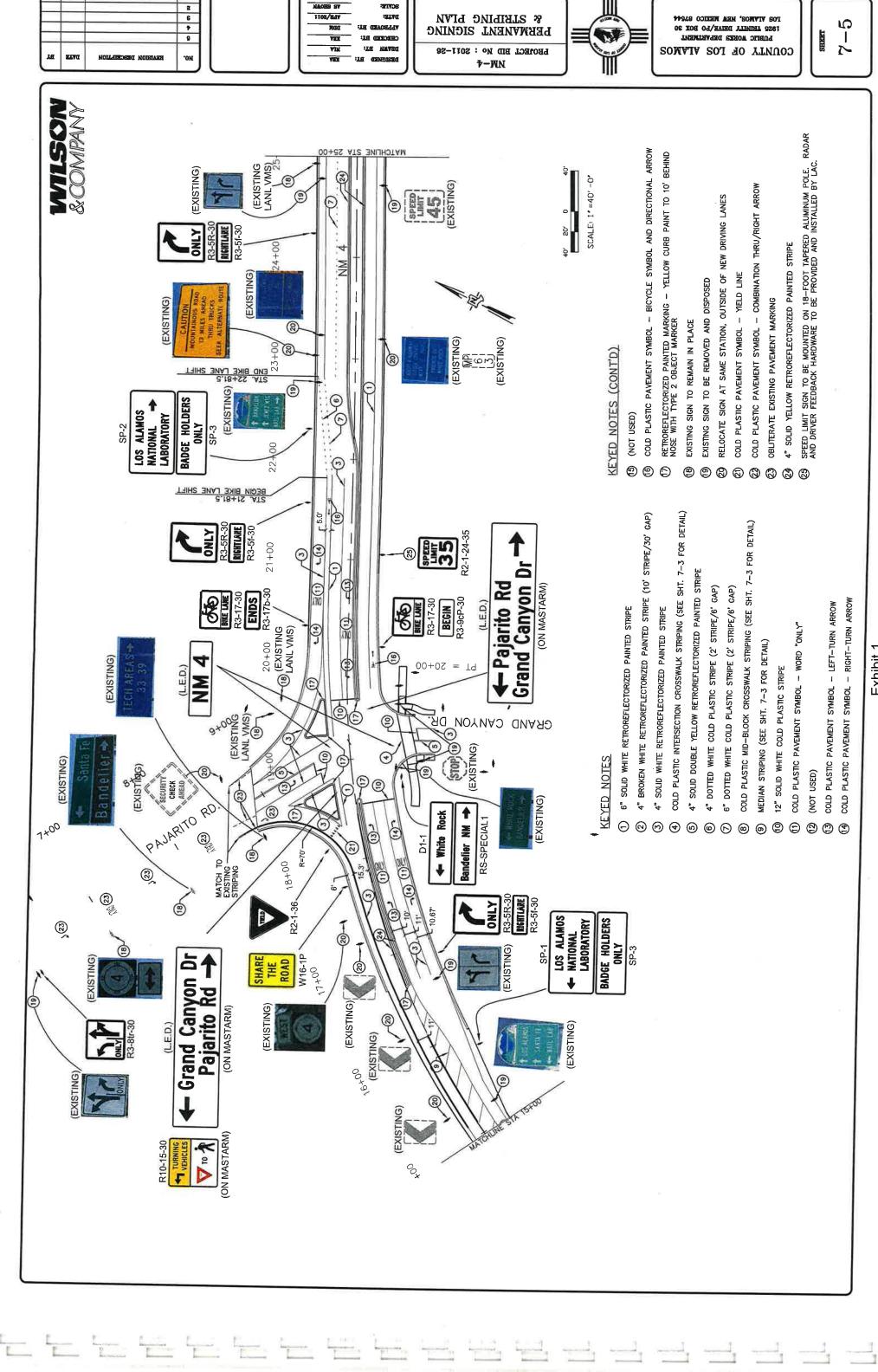
ĺ.

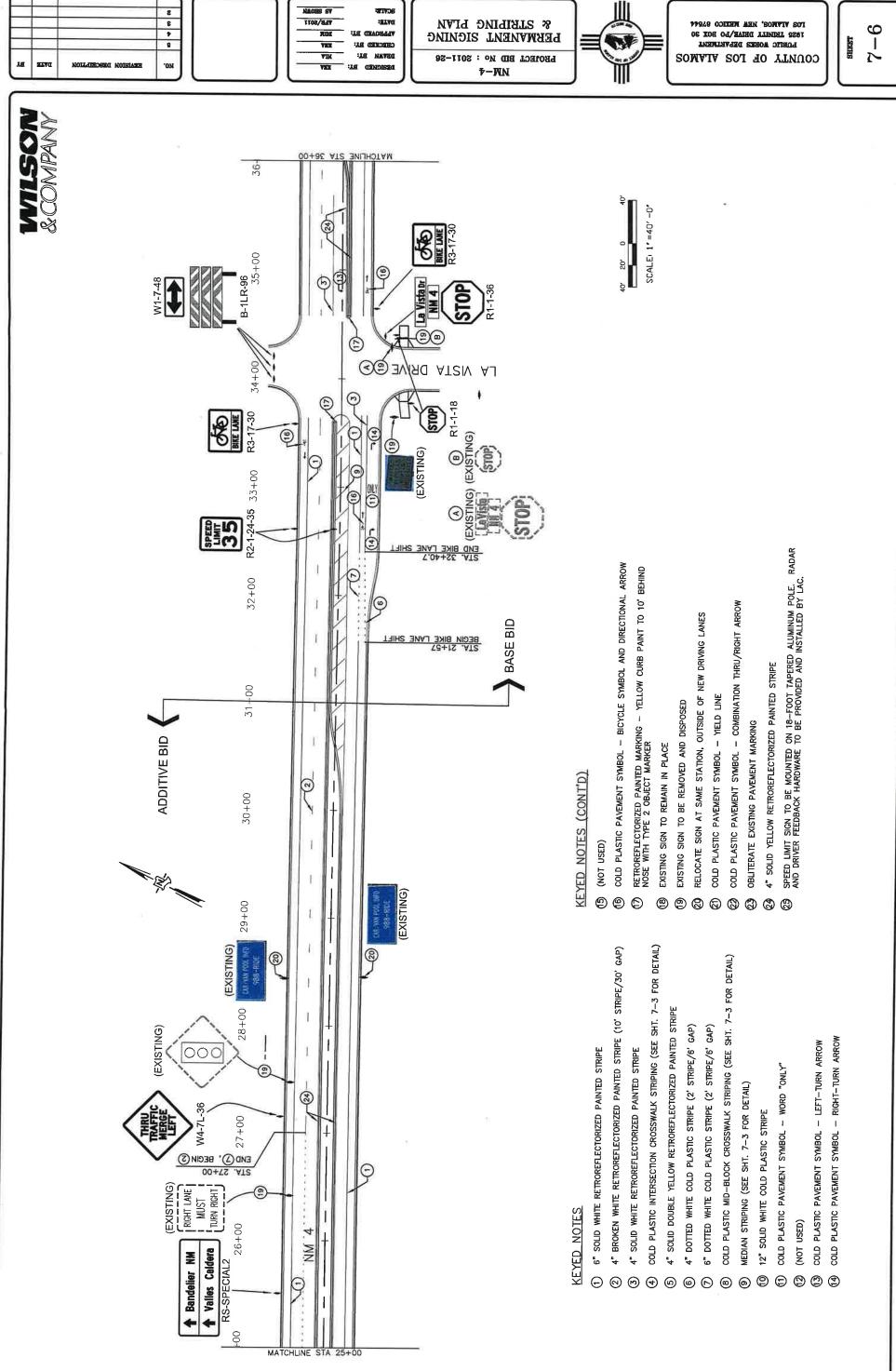

1

Ĺ

1

Ľ.


U.

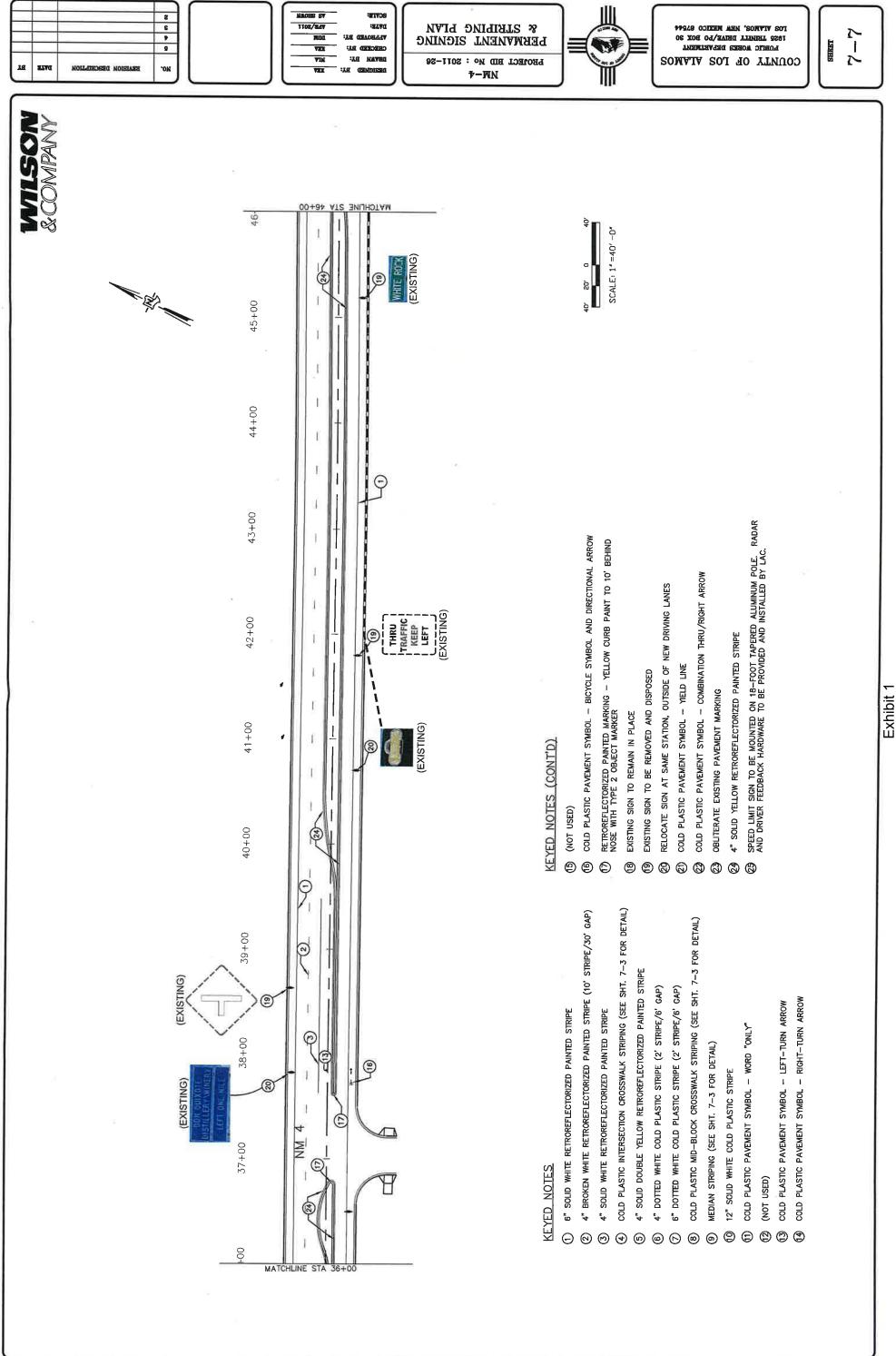

RETRORFELECTORIZED PAINTED MARKING - YELLOW CURB PAINT TO 10' BEHIND NOSE WITH TYPE 2 OBJECT MARKER COLD PLASTIC PAVEMENT SYMBOL - BICYCLE SYMBOL AND DIRECTIONAL ARROW 4" BROKEN WHITE RETROREFLECTORIZED PAINTED STRIPE (10' STRIPE/30' GAP) SPEED LIMIT SIGN TO BE MOUNTED ON 18-FOOT TAPERED ALUMINUM POLE. DRIVER FEEDBACK HARDWARE TO BE PROVIDED AND INSTALLED BY LAC. OBLITERATE EXISTING PAVEMENT MARKING (INCIDENTAL TO CONSTRUCTION) COLD PLASTIC PAVEMENT SYMBOL - COMBINATION THRU/RIGHT ARROW COLD PLASTIC INTERSECTION CROSSWALK STRIPING (SEE SHT. 7-3 RELOCATE SIGN AT SAME STATION, OUTSIDE OF NEW DRIVING LANES 4" SOLID DOUBLE YELLOW RETROREFLECTORIZED PAINTED STRIPE 4" DOTTED WHITE COLD PLASTIC STRIPE (2' STRIPE/6' GAP) 6" DOTTED WHITE COLD PLASTIC STRIPE (2' STRIPE/6' CAP) COLD PLASTIC PAVEMENT SYMBOL - RIGHT-TURN ARROW 4" SOLID YELLOW RETROREFLECTORIZED PAINTED STRIPE 4" SOLID WHITE RETROREFLECTORIZED PAINTED STRIPE COLD PLASTIC PAVEMENT SYMBOL - WORD "ONLY" COLD PLASTIC MID-BLOCK CROSSWALK STRIPING COLD PLASTIC PAVEMENT SYMBOL - LEFT-TURN COLD PLASTIC PAVEMENT SYMBOL - MELD LINE MEDIAN STRIPING (SEE SHT. 7-3 FOR DETAIL) EXISTING SIGN TO BE REMOVED AND DISPOSED 12" SOLID WHITE COLD PLASTIC STRIPE EXISTING SIGN TO REMAIN IN PLACE (NOT USED) (NOT USED) 6 \odot 995 @ 9888 8 8

6" SOLID WHITE RETROREFLECTORIZED PAINTED STRIPE KEYED NOTES Θ

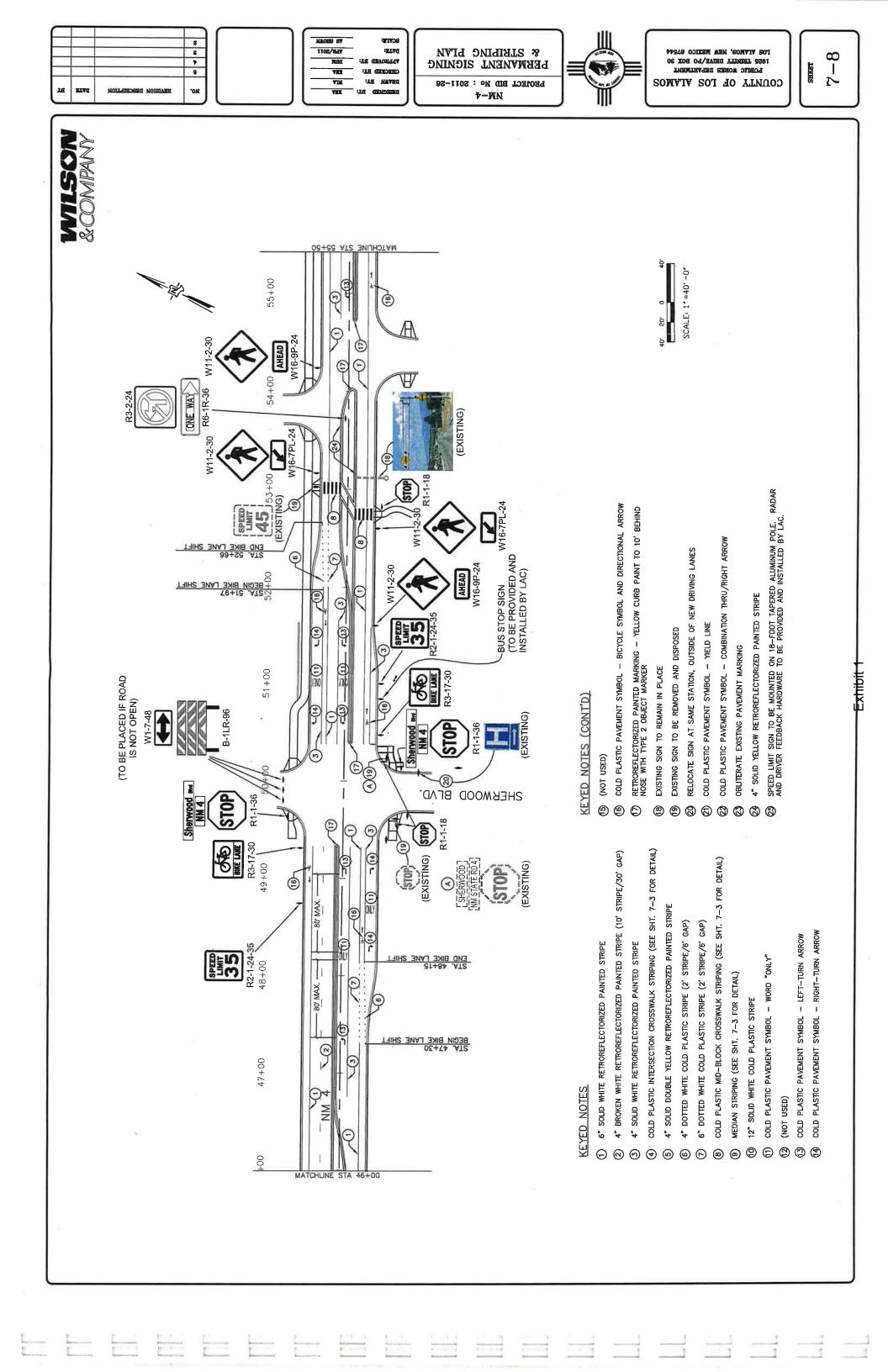
r,

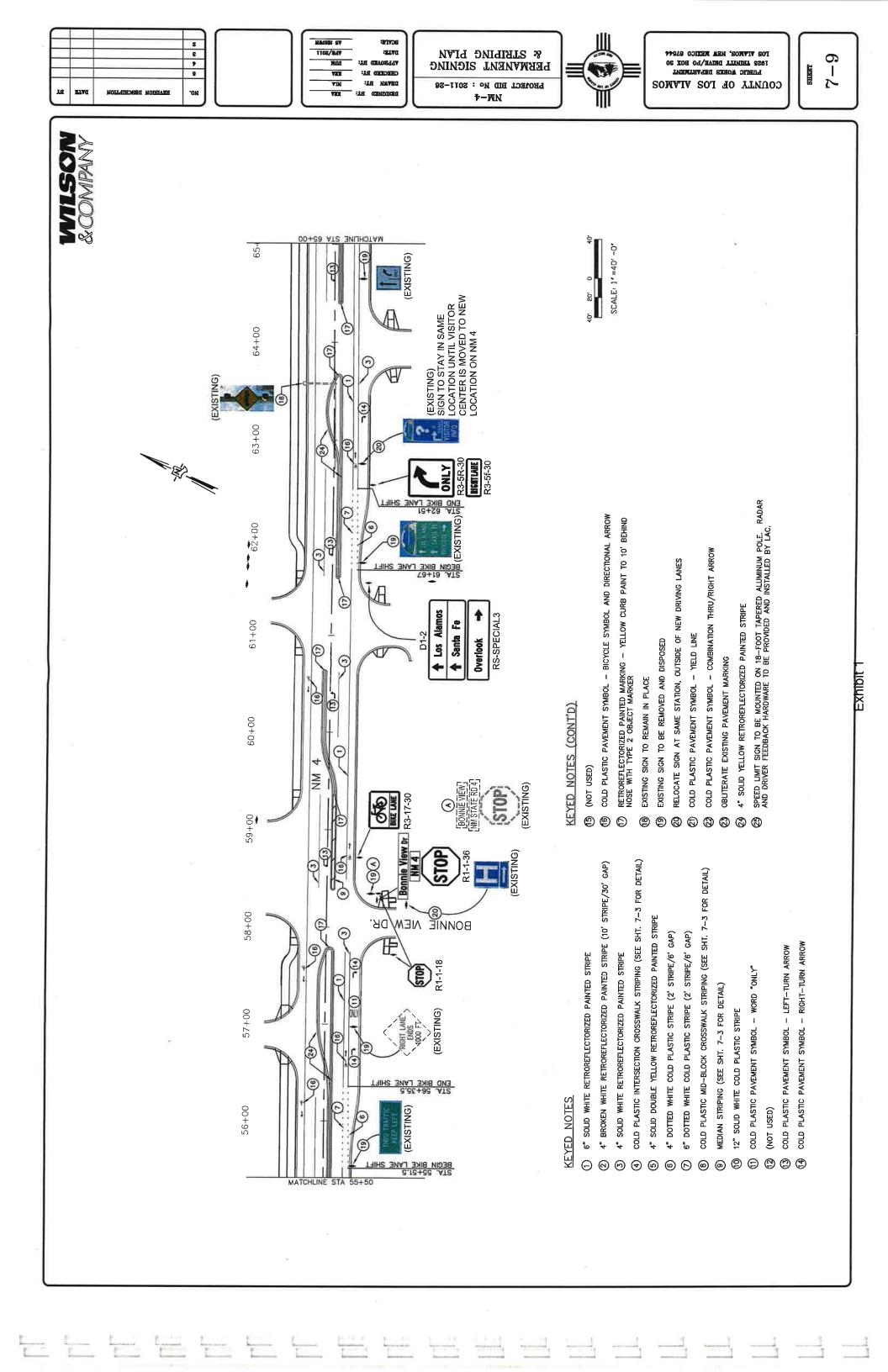
Exhibit

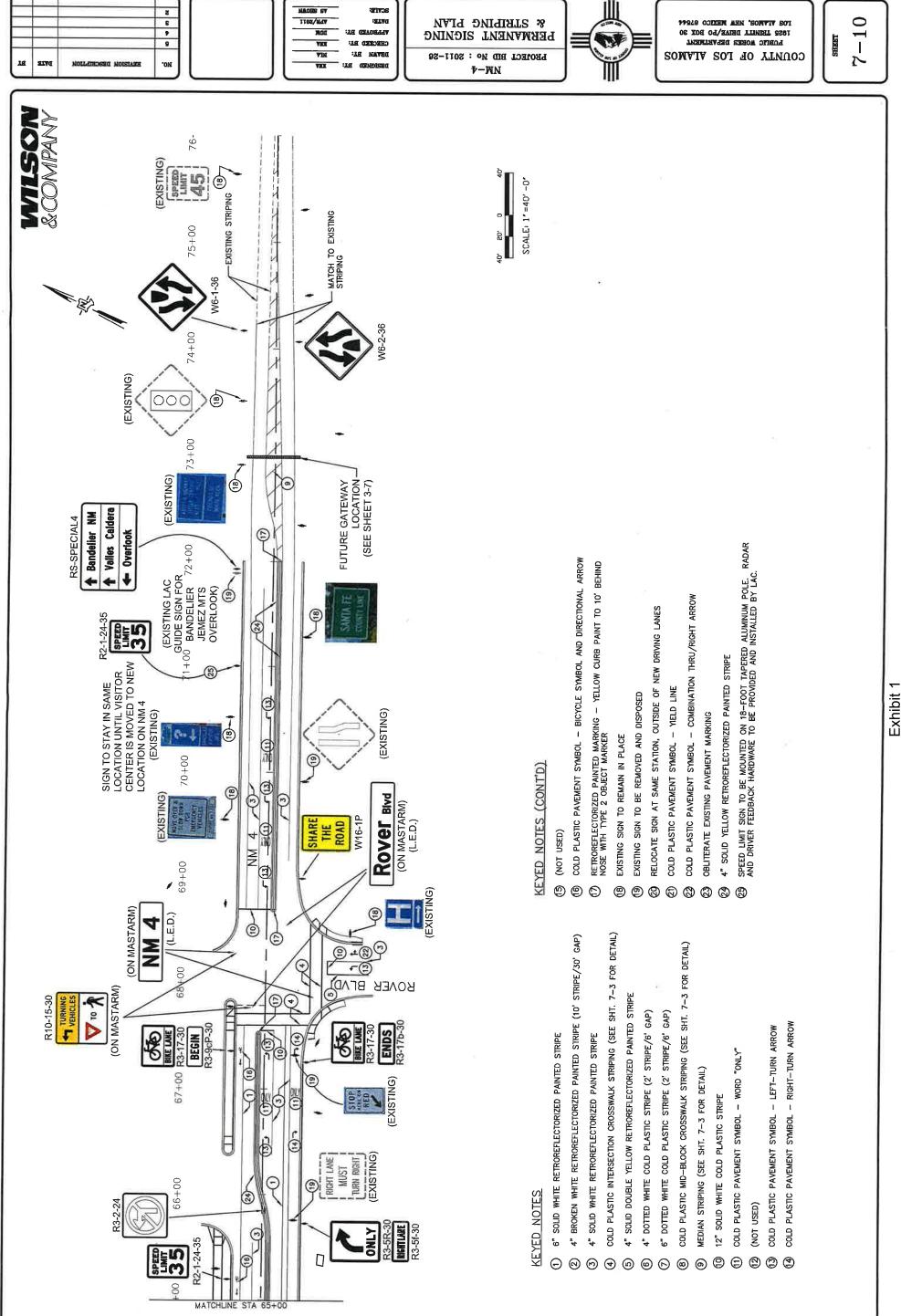
and .


L

E


E fini i


Ē


Exhibit

L

1 For

1.11

-

1

2____

1

-

1

1

Appendix B

5

rf.

E.

E

Existing Intersection Capacity Analysis

Exhibit 1

HCM 6th Signalized Intersection Summary 1: Rover & SR 4

П

П

T.

ſ

ľ

ſ

1

	≯	-	\mathbf{r}	•	-	×.	1	t	1	1	÷.	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	1	1	7	Þ		ሻ	(4	
Traffic Volume (veh/h)	3	207	27	171	282	26	155	13	454	11	2	
Future Volume (veh/h)	3	207	27	171	282	26	155	13	454	11	2	1
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	Ō	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No		South States	No			No		1.00	No	1,00
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	3	225	29	186	307	28	168	14	493	12	2	1010
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	0.52
Cap, veh/h	325	342	290	459	491	45	751	18	628	263	38	10
Arrive On Green	0.00	0.18	0.18	0.11	0.29	0.29	0.10	0.41	0.41	0.21	0.21	0.21
Sat Flow, veh/h	1781	1870	1585	1781	1689	154	1781	44	1548			
Grp Volume(v), veh/h	3		29	186						491	186	48
and the second se		225			0	335	168	0	507	15	0	0
Grp Sat Flow(s),veh/h/In	1781	1870	1585	1781	0	1843	1781	0	1592	725	0	0
Q Serve(g_s), s	0.1	4.5	0.6	3.1	0.0	6.3	2.7	0.0	11.1	0.0	0.0	0.0
Cycle Q Clear(g_c), s	0.1	4.5	0.6	3.1	0.0	6.3	2.7	0.0	11.1	3.2	0.0	0.0
Prop In Lane	1.00		1.00	1.00	Tool Sector	0.08	1.00	and some lower	0.97	0.80		0.07
Lane Grp Cap(c), veh/h	325	342	290	459	0	536	751	0	645	312	0	0
V/C Ratio(X)	0.01	0.66	0.10	0.41	0.00	0.62	0.22	0.00	0.79	0.05	0.00	0.00
Avail Cap(c_a), veh/h	498	749	635	528	0	830	797	0	1036	529	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	13.3	15.2	13.6	10.2	0.0	12.3	9.2	0.0	10.4	12.8	0.0	0.0
Incr Delay (d2), s/veh	0.0	2.2	0.1	0.6	0.0	1.2	0.1	0.0	2.2	0.1	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	0.0	1.7	0.2	0.9	0.0	2.1	0.9	0.0	3.3	0.1	0.0	0.0
Unsig. Movement Delay, s/veh											and the second	THUR SHOT
LnGrp Delay(d),s/veh	13.3	17.3	13.7	10.8	0.0	13.5	9.3	0.0	12.5	12.9	0.0	0.0
LnGrp LOS	В	В	В	В	А	В	А	А	В	В	A	A
Approach Vol, veh/h	and the second	257		See allas	521		100	675	12:25-11.0	2.02	15	27 BM
Approach Delay, s/veh		16.9			12.5			11.7	191 ST 91 ST		12.9	and the second
Approach LOS	19 Date	В			В		Water and the	В	NUMBER OF	Stores .	B	N'szine
Timer - Assigned Phs		2	3	4		R	7			10 JN 15		
Phs Duration (G+Y+Rc), s	SALE OF	20.2	8.5	4	8.0	12.2	4.1	15.6	and the	100 NO.40	1	-
Change Period (Y+Rc), s		4.0	4.0	4.0	4.0	4.0	4.1	15.6 4.0	STREE AND	SCIECT SILVA	NEW YORKS	11 10 10
Max Green Setting (Gmax), s	10 2012	26.0	6.0	4.0	4.0 5.0	4.0			States Server	1/2-1 1 20 7 mil	-	
Max Q Clear Time (g_c+11), s	139.6W/c3	13.1	5.1	and the second se			4.0	18.0				
Green Ext Time (p_c), s	COLORIS DA			6.5	4.7	5.2	2.1	8.3	-	ist here	Silver and	and and
	NEW SER	3.1	0.0	0.8	0.0	0.0	0.0	1.3	SN1755 3		alex nes	1.198
Intersection Summary			10.0		in the second			1			1122	
HCM 6th Ctrl Delay			12.9		191662	191.40					1922	
HCM 6th LOS			в									

N:\Trans\Proposals\2018 FY Proposals\TIA's\Tract A-19-a Huitt Zollars\2018 Study\Analysis\Synchro\exam.syn EJW/BHI

HCM Signalized Intersection Capacity Analysis 4: Grand Canyon/Pajarito & SR 4

Ð.

Г

ſ

[

1

	≯	-	\mathbf{r}	<	-		1	Ť	1	1	Ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٣	1	*	7	1	1	٦	ef.		1	1+	
Traffic Volume (vph)	43	47	9	0	41	604	9	118	3	13	121	0
Future Volume (vph)	43	47	9	0	41	604	9	118	3	13	1	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0		4.0	4.0	4.0	4.0		4.0	4.0	
Lane Util. Factor	1.00	1.00	1.00		1.00	1.00	1.00	1.00		1.00	1.00	833 B.C.
Frt	1.00	1.00	0.85		1.00	0.85	1.00	1.00		1.00	1.00	
Fit Protected	0.95	1.00	1.00		1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1770	1863	1583		1863	1583	1770	1856		1719	1810	
Flt Permitted	0.83	1.00	1.00		1.00	1.00	1.00	1.00		1.00	1.00	3.01.84
Satd. Flow (perm)	1552	1863	1583		1863	1583	1863	1856		1810	1810	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	47	51	10	0	45	657	10	128	3	14	1	0
RTOR Reduction (vph)	0	0	8	0	0	0	0	2	0	0	0	0
Lane Group Flow (vph)	47	51	2	0	45	657	10	129	0	14	1	0
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	2%	2%	2%	5%	5%	5%
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Free	pm+pt	NA		pm+pt	NA	
Protected Phases	7	4		3	8		5	2		1	6	1. N. 1
Permitted Phases	4		4	8		Free	2			6		_
Actuated Green, G (s)	5.2	5.2	5.2		0.8	21.0	3.8	3.4		3.8	3.4	
Effective Green, g (s)	5.2	5.2	5.2		0.8	21.0	3.8	3.4		3.8	3.4	
Actuated g/C Ratio	0.25	0.25	0.25		0.04	1.00	0.18	0.16	N SAR	0.18	0.16	A 87432
Clearance Time (s)	4.0	4.0	4.0		4.0		4.0	4.0		4.0	4.0	
Vehicle Extension (s)	3.0	3.0	3.0	1.58	3.0	142.00	3.0	3.0		3.0	3.0	535
Lane Grp Cap (vph)	388	461	391		70	1583	335	300		325	293	
v/s Ratio Prot	0.00	0.03			0.02		0.00	0.07	2011000	0.00	0.00	No. 199
v/s Ratio Perm	0.03		0.00			c0.41	0.00			0.01		
v/c Ratio	0.12	0.11	0.01		0.64	0.42	0.03	0.43	St. Sold	0.04	0.00	Nind [*]
Uniform Delay, d1	6.2	6.1	6.0		10.0	0.0	7.1	7.9		7.1	7.4	
Progression Factor	1.00	1.00	1.00	Ser In	1.00	1.00	1.00	1.00		1.00	1.00	ALC: AL
Incremental Delay, d2	0.1	0.1	0.0		18.4	0.8	0.0	1.0		0.1	0.0	and the second s
Delay (s)	6.3	6.2	6.0	26 A. C.	28.4	0.8	7.1	8.9		7.2	7.4	22.4
Level of Service	А	А	A		С	А	Α	А		А	А	
Approach Delay (s)		6.2		1000	2.6			8.8			7.2	
Approach LOS		А			А			А			A	
Intersection Summary	a state of		W-2475	Web - The	7X5X-3				1000	ne av al e		
HCM 2000 Control Delay			4.0	H	CM 2000	Level of	Service		А			
HCM 2000 Volume to Capa	acity ratio		1.74			Stands.	23,552		122.00 V.S.	1.583	NA SET	
Actuated Cycle Length (s)			21.0		m of lost				16.0			
Intersection Capacity Utilization	ation		26.5%		U Level o		e		А	S24832.	233334	sto S
Analysis Period (min)			15									
c Critical Lane Group	1.503.524.5				Contraction of the				Ser Ma	3335 Y	No. S. M.	1

N:\Trans\Proposals\2018 FY Proposals\TIA's\Tract A-19-a Huitt Zollars\2018 Study\Analysis\Synchro\exam.syn EJW/BHI

HCM 6th Signalized Intersection Summary 1: Rover & SR 4

ſ

Π

Π

F

	≯	-	\mathbf{r}	4	-	A.	•	1	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٢	1	7	۲	4		ň	f,			4	
Traffic Volume (veh/h)	6	407	204	312	160	34	50	27	187	65	28	3
Future Volume (veh/h)	6	407	204	312	160	34	50	27	187	65	28	3
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	7	442	222	339	174	37	54	29	203	71	30	3
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	531	559	473	516	675	143	508	53	370	242	62	5
Arrive On Green	0.01	0.30	0.30	0.16	0.45	0.45	0.04	0.26	0.26	0.12	0.12	0.12
Sat Flow, veh/h	1781	1870	1585	1781	1495	318	1781	202	1414	813	500	39
Grp Volume(v), veh/h	7	442	222	339	0	211	54	0	232	104	0	0
Grp Sat Flow(s), veh/h/ln	1781	1870	1585	1781	0	1813	1781	0	1616	1352	0	0
Q Serve(g_s), s	0.1	9.3	4.9	5.0	0.0	3.1	1.1	0.0	5.3	2.6	0.0	0.0
Cycle Q Clear(g_c), s	0.1	9.3	4.9	5.0	0.0	3.1	1.1	0.0	5.3	3.0	0.0	0.0
Prop In Lane	1.00		1.00	1.00		0.18	1.00		0.88	0.68		0.03
Lane Grp Cap(c), veh/h	531	559	473	516	0	818	508	0	423	309	0	0
V/C Ratio(X)	0.01	0.79	0.47	0.66	0.00	0.26	0.11	0.00	0.55	0.34	0.00	0.00
Avail Cap(c_a), veh/h	683	697	591	521	0	818	595	0	941	663	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1:00	0.00	0.00
Uniform Delay (d), s/veh	10.4	13.8	12.3	8.7	0.0	7.3	13.6	0.0	13.7	17.7	0.0	0.0
Incr Delay (d2), s/veh	0.0	4.9	0.7	3.0	0.0	0.2	0.1	0.0	1.1	0.6	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	0.0	3.8	1.4	1.6	0.0	0.9	0.4	0.0	1.8	0.9	0.0	0.0
Unsig. Movement Delay, s/veh												and processing
LnGrp Delay(d),s/veh	10.4	18.8	13.0	11.7	0.0	7.5	13.7	0.0	14.8	18.4	0.0	0.0
LnGrp LOS	В	В	В	В	А	А	В	А	В	В	А	А
Approach Vol, veh/h	900 A.	671	1000		550	12 1 26 1	15-6-5-46	286	11. S. 450		104	20.55
Approach Delay, s/veh		16.8			10.1			14.6			18.4	THE REAL
Approach LOS		В	Later State	CENTING	В	1953		В	() () () () () () () () () () () () () (1	В	0,000
Timer - Assigned Phs	i di kaz	2	3	4	5	6	7	8			N'RECTUD	1.00
Phs Duration (G+Y+Rc), s	· Storage	15.2	10.9	16.8	5.9	9.3	4.3	23.4	CITY SHIP	Augentine .	No.	NOTION.
Change Period (Y+Rc), s		4.0	4.0	4.0	4.0	4.0	4.0	4.0		A REAL PROPERTY	of the second	and the second
Max Green Setting (Gmax), s	E00973(5)	25.0	7.0	16.0	4.0	17.0	4.0	19.0				and a
Max Q Clear Time (g_c+11), s		7.3	7.0	11.3	3.1	5.0	2.1	5.1			10010-100	
Green Ext Time (p_c), s		1.4	0.0	1.5	0.0	0.4	0.0	0.9	1.5.37455	out the s	SEU NA	100
Intersection Summary		3.33.20	10						The second second			
HCM 6th Ctrl Delay	A COLOR		14.2						OLOU PART	-		at all designed
HCM 6th LOS	2100210	192	14.2 B	AN CALC	ALESS INCOM	TERSION	mile, 53745		adille age	C68/19-20	The way	
			В									

N:\Trans\Proposals\2018 FY Proposals\TIA's\Tract A-19-a Huitt Zollars\2018 Study\Analysis\Synchro\expm.syn EJW/BHI

Synchro 7 - Report Page 1

HCM Signalized Intersection Capacity Analysis 4: Grand Canyon/Pajarito & SR 4

ſ

Π

ſ

Π

T.

-

L

White Rock Master Plan Tract A-19 Existing PM

	٦	-	$\mathbf{\hat{z}}$	4	+	*	1	Ť	1	1	Ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	1	1	ľ	1	7	٢	Þ		٢	₽	
Traffic Volume (vph)	3	110	8	7	58	16	10	2	6	553	86	23
Future Volume (vph)	3	110	8	7	58	16	10	2	6	553	86	23
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	1001	4.0	4.0	Contraction of the local division of the loc
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	LOAD ANY
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.88		1.00	0.97	Property in the
FIt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	136-2	0.95	1.00	1015
Satd. Flow (prot)	1770	1863	1583	1770	1863	1583	1770	1645		1770	1804	and the second
Fit Permitted	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		0.87	1.00	SWE PE
Satd. Flow (perm)	1863	1863	1583	1863	1863	1583	1863	1645	_	1620	1804	The second se
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	3	120	9	8	63	17	11	2	7	601	93	25
RTOR Reduction (vph)	0	0	8	0	0	0	0	7	0	0	15	0
Lane Group Flow (vph)	3	120	1	8	63	17	11	2	0	601	103	0
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Free	pm+pt	NA	1.85	pm+pt	NA	alonae.
Protected Phases	7	4		3	8		5	2	- APALL III	1	6	and the second
Permitted Phases	4	a shall a	4	8	NANGS	Free	2	Eta d	ivesti r	6	CERTAIN AND	YEAR !!
Actuated Green, G (s)	2.7	2.3	2.3	2.7	2.3	29.6	1.0	0.6		14.9	10.5	Contraction of the
Effective Green, g (s)	2.7	2.3	2.3	2.7	2.3	29.6	1.0	0.6		14.9	10.5	5.2/63
Actuated g/C Ratio	0.09	0.08	0.08	0.09	0.08	1.00	0.03	0.02	and the local	0.50	0.35	Sector and
Clearance Time (s)	4.0	4.0	4.0	4.0	4.0	-	4.0	4.0		4.0	4.0	12 1 2 2 2
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	1.100.000.010	3.0	3.0	o contraction	3.0	3.0	PERMIT
Lane Grp Cap (vph)	168	144	123	168	144	1583	61	33	All and the	867	639	RUNUS.
v/s Ratio Prot	0.00	c0.06		0.00	0.03	1000	0.00	0.00	5.1310-0-0.5	c0.24	0.06	CHINESE,
v/s Ratio Perm	0.00	3./[0.899	0.00	0.00		c0.01	0.00	0.00	13519110	c0.11	0.00	12070
v/c Ratio	0.02	0.83	0.01	0.05	0.44	0.01	0.18	0.06		0.69	0.16	NV-
Uniform Delay, d1	12.3	13.5	12.6	12.3	13.0	0.0	14.1	14.2	111111	5.5	6.5	1.1.1952
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	TO INCOME.	1.00	1.00	ALCOHOLD .
Incremental Delay, d2	0.0	31.9	0.0	0.1	2.1	0.0	1.4	0.8	35 (A) 14	2.4	0.1	0.744.53
Delay (s)	12.3	45.4	12.6	12.4	15.2	0.0	15.5	15.1		8.0	6.7	CENCRAN .
Level of Service	В	D	В	В	В	A	В	В		A	A	8 V227
Approach Delay (s)		42.4		North Contraction	12.0	H DACS		15.3			7.7	2007040
Approach LOS	Section on	D	1. State	S. 275.14	В	1.200	A STOLE	B	Service.	ALC: NOT	A	il Uran
Intersection Summary		ana ana	Lancas W	S.L.	ST Marine	27 S.	- Wiender		255 M M	COLUMN S		, uero
HCM 2000 Control Delay			13.1	Н	CM 2000	Level of	Service	1888 N.	В	1.10	14 1 1 2 2	
HCM 2000 Volume to Capa	acity ratio		0.90				dest () and ()	A COLUMN A COLUMN	11- 11-A	1100-110-000		
Actuated Cycle Length (s)			29.6	Si	um of lost	time (s)	14 - 14 P. 1	N. 685.2	16.0		ALK-SA-	11-220
Intersection Capacity Utilization	ation		49.8%		U Level of		Martin Catella		A	10 13 11 11 12	ACCOMPTING	and sold and
Analysis Period (min)		1.000	15	NAME OF G	2 201010		1.		and a			V SALLE
c Critical Lane Group		AND A DOUGH			No. III. Acad		Non 1985		and the	A PRIMA PARA		SCC2010

c Critical Lane Group

Intersection Int Delay, s/veh 1.8

ſ

n.

1

[]

Π

[]

FI-

II.

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	15 CAN BURGH 9384
Lane Configurations	۲	1	1	٦	1	1	٢	P		7	1		
Traffic Vol, veh/h	0	68	12	41	606	0	34	0	57	0	0	0	A SHEER REAL PROPERTY STATE
Future Vol, veh/h	0	68	12	41	606	0	34	0	57	0	0	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized			None	10.00	. A.C.2.	None		12.00	None	15-16		None	人物 日本市场 出版 化
Storage Length	250	-	150	250	-	150	150	-	-	150	-	-	
Veh in Median Storage,	# -	0		-	0	-		0		51 ⁽²)4	0		
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	0	0	0	
Nvmt Flow	0	74	13	45	659	0	37	0	62	0	0	0	CREEKS AND TONIC

Major/Minor	Major1		M	ajor2		2	Minor1			Ainor2	Jun Mark	THULL.	Che And Selfer Street
Conflicting Flow All	659	0	0	87	0	0	823	823	74	861	836	659	
Stage 1		1.	1419			-	74	74	130.23	749	749		A STATE OF STATES
Stage 2		19 %	-				749	749	-	112	87	-	
Critical Hdwy	4.12			4.12			7.12	6.52	6.22	7.1	6.5	6.2	San Stranger
Critical Hdwy Stg 1	-		-		-	0.00	6.12	5.52	-	6.1	5.5	-	
Critical Hdwy Stg 2	1		12.4		and the state		6.12	5.52	2 R	6.1	5.5		
Follow-up Hdwy	2.218	i n t).	- 1	2.218	-	100	3.518	4.018	3.318	3.5	4	3.3	
Pot Cap-1 Maneuver	929			1509	day ¥18		292	309	988	278	305	467	
Stage 1	-	(*)					935	833	-	407	422	-	
Stage 2	Ale a	Wine la					404	419		898	827	63 8 - 1	A CAREAR STATE
Platoon blocked, %			-		-								
Mov Cap-1 Maneuver	929	SACE	1	1509	100	1	285	300	988	255	296	467	
Nov Cap-2 Maneuver	-			3 # 5			285	300	-	255	296	-	
Stage 1	18-6-51	153.24	S - 1	1.000	2 1 C 2 C 3	-	935	833	02240	407	409		
Stage 2	-			3 9 3			392	406	9	842	827	-	APPROX APPROX APPROX APPROX CAL
		20-1-27			14 5,001	-		22.2		201 201	12.72 -	all all	

Approach	EB	a n s	WB	SV-1		NB	ng P		SB	1.3	TRACE TO CAME THE STA
HCM Control Delay, s	0	1-21-2	0.5	10.5	1. 12	12.9		116	0		
HCM LOS						В			Α		
	Se aline			Rate			12.170	(insta	1. 1914	12.152	
Minor Lane/Major Mvmt	NBLn1	NBLn2	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1 SI	BLn2	
Capacity (veh/h)	285	988	929		104	1509	Saura:	Ner 3	C. C. CRIS		ter and have been the stand
HCM Lane V/C Ratio	0.13	0.063	-	-		0.03			-		
HCM Control Delay (s)	19.5	8.9	0	12.00		7.5	- N.		0	0	
HCM Lane LOS	C	А	А	-		A	0-0	-	А	A	A CONTRACTOR AND A CONTRACT
HCM 95th %tile Q(veh)	0.4	0.2	0		Sec. mit	0.1	-	2.84	लीम्बर्धा हेल्	1.	

N:\Trans\Proposals\2018 FY Proposals\TIA's\Tract A-19-a Huitt Zollars\2018 Study\Analysis\Synchro\exam.syn EJW/BHI

HCM 6th TWSC 3: La Vista & SR 4

Π

19

Π

n.

ſſ

F[-

1

Intersection Int Delay, s/veh

0.3

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	ň	1	1	1	14			4			4		
Traffic Vol, veh/h	0	63	0	0	640	0	5	0	17	0	0	0	
Future Vol, veh/h	0	63	0	0	640	0	5	0	17	0	0	0	Contra de la contr
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	P C-I WILLIAM AND AND A COMPANY
RT Channelized	131 - I		None		12.	None	828 I.I.	Straw.	None	Sec. 6	116	None	ine Shiri Arthean an a
Storage Length	250	-	150	250	-	-	-	-	-	-	-		
Veh in Median Storage,	# -	0		nan-	0	1	3.18¥	0			0		
Grade, %	-	0	-	-	0	-	-	0	-	-	0	3443	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Nvmt Flow	0	68	0	0	696	0	5	0	18	0	0	0	

			lajor2			Minor1			Minor2			
696	0	0	68	0	0	416	764	68	773	764	348	
(8) - (1)	See N		37.4	distant.	682	-68	68	dingi-	696	696	100-	Australia Contractor
	-			-	-	348	696	-	77	68	-	
4.13	a la cha		4.13	1545	19 -	7.33	6.53	6.23	7.33	6.53	6.93	126 August of State
	5 -6 0	-	-	+	-	6.13	5.53	-	6.53	5.53	-	
30.÷2		-	RE		μ.,	6.53	5.53		6.13	5.53		
2.219	(+0)	- 1	2.219	-	-	3.519	4.019	3.319	3.519	4.019	3.319	
898	Sec.	14	1532		19 <u>-</u>	534	333	995	302	333	649	
-	5 -0 1)		-	-	-	942	838	-	399	442	-	Contraction of the states
	-	-				642	442	3 C.	931	838	1214	
	-											
898	17 BUNK	1	1532		nie:	534	333	995	296	333	649	Contraction of the
-	-		19 5	Ξ.	-	534	333	-	296	333	-	
1.00		1	1112		100	942	838		399	442	125. L	and the state of the second
(4)	-	(m)	-	¥	-	642	442	-	914	838	-	
	4.13 2.219 898	4.13 - 2.219 - 898 -	4.13	4.13 - 4.13 2.219 - 2.219 898 - 1532 	4.13 - 4.13 - 2.219 - 2.219 - 898 - 1532 - 898 - 1532 -	4.13 - 4.13 - 2.219 - 2.219 - 898 - 1532 - 898 - 1532 - 898 - 1532 -	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- - - 68 68 4.13 - - 348 696 4.13 - - 348 696 4.13 - - 7.33 6.53 - - - 6.13 5.53 - - - 6.53 5.53 2.219 - 2.219 - 3.519 4.019 898 - 1532 - 534 333 - - - 642 442 - - - 642 333 - - - 534 333 - - - 534 333 - - - 534 333 - - - - 534 333 - - - - 942 838	- - - 68 68 - 4.13 - - 348 696 - 4.13 - - 7.33 6.53 6.23 - - - 6.13 5.53 - - - - 6.53 5.53 - 2.219 - 2.219 - 3.519 4.019 3.319 898 - 1532 - 534 333 995 - - - - 642 442 - - - - - 534 333 995 - - - - 534 333 995 - - - - 534 333 995 - - - - 534 333 995 - - - - 534 333 - - - - - 543 333 -	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Approach	EB	WB	NB	SB	with son of evening the street
HCM Control Delay, s	0	0	9.5	0	
HCM LOS			A	A	
Provide Contract States and	Sel Durch Kindle	The second state of the se	SUBSTRUCTION PROPERTY OF		and the setting of the state of the large has

Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR SI	BLn1
Capacity (veh/h)	832	898			1532		Kan	1.1
HCM Lane V/C Ratio	0.029			-		-		
HCM Control Delay (s)	9.5	0		- 1 () - 1 -	0			0
HCM Lane LOS	A	Α	(*)	+	А	-		A
HCM 95th %tile Q(veh)	0.1	0			0	1	100	1.154

N:\Trans\Proposals\2018 FY Proposals\TIA's\Tract A-19-a Huitt Zollars\2018 Study\Analysis\Synchro\exam.syn EJW/BHI

Intersection Int Delay, s/veh

p-4

Г

r - - -

ſ

Ē

[[

[].

Int Delay, s/veh	3.6												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	Deservice and the
Lane Configurations	۲	1	1	ŋ	†	1	٦ ۲	4		ň	4		
Traffic Vol, veh/h	0	553	104	134	95	0	18	0	129	0	0	0	
Future Vol, veh/h	0	553	104	134	95	0	18	0	129	0	0	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	A STATE OF STATE OF STATE
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	Tayler	4163	None		830	None	51238		None			None	NICKSTED AVENUESSEN
Storage Length	250	-	150	250	-	150	150		-	150	-	-	
Veh in Median Storage,	# -	0	1 10 -0		0	inter-i	131-	0	1651	9. T.	0	21.97-5	A PAR A PARA
Grade, %	-	0		20	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	0	601	113	146	103	0	20	0	140	0	0	0	

Major/Minor	Major1		HIL	Major2			Minor1		- C - S	Minor2	154	Sec. 1	
Conflicting Flow All	103	0	0	714	0	0	996	996	601	1123	1109	103	
Stage 1	- PAR	102.00	×.		41 57	-	601	601		395	395		WERE WARDEN
Stage 2	-	-				-	395	395		728	714	-	
Critical Hdwy	4.12	1899 all	1	4.12	Nº 20		7.12	6.52	6.22	7.12	6.52	6.22	
Critical Hdwy Stg 1	12	-	-		-	-	6.12	5.52	-	6.12	5.52	-	
Critical Hdwy Stg 2	129.24	12 Frend	-	Sur al	2.	R Oa	6.12	5.52	She	6.12	5.52	Sal Cart	
Follow-up Hdwy	2.218		-	2.218		-	3.518	4.018	3.318	3.518	4.018	3.318	
Pot Cap-1 Maneuver	1489	in Street	1	886	317.23	1004	223	244	500	183	210	952	Market of Parks
Stage 1	-		1.			-	487	489	-	630	605	-	
Stage 2	-		-			8. 20	630	605		415	435	2.14	的人。如何是他们的意思。他们是你们
Platoon blocked, %		л.	-										
Mov Cap-1 Maneuver	1489	37-24		886	9 B.R.		195	204	500	115	175	952	CARLES AND A CARLES AND
Mov Cap-2 Maneuver	-						195	204	-	115	175	+	
Stage 1	23.5	-	i.e	122.	State -		487	489	100	630	505	Contra Fait	Constant with the set
Stage 2	-	E.	-		(•:	:•?	526	505	*	299	435	-	
			181			100		Carlo A	1000		238		

Approach	EB	WB	NB	SB	
HCM Control Delay, s	0	5.8	16.3	0	
HCM LOS			С	А	and the second se
A Discussion of the second second second	and the second second	The second second second second second	The second second second second	TANKS TO PROVIDE A DRAW OF	And the Article of th

Minor Lane/Major Mvmt	NBLn1M	IBLn2	EBL	EBT	EBR	WBL	WBT	WERS	BLn1 SB	Ln2		T-Shi
Capacity (veh/h)	195	500	1489			886		-	100		A STATE NO. 18 THE AVE	127
HCM Lane V/C Ratio	0.1	0.28	-			0.164		-	-	-		
HCM Control Delay (s)	25.5	15	0	C. A.	1915	9.9	WILL	12 - 14	0	0	Serven Steven West	4
HCM Lane LOS	D	С	А		-	А		-	А	А		
HCM 95th %tile Q(veh)	0.3	1.1	0	1982		0.6		-	1	11223	S. De Miner Marker	138

N:\Trans\Proposals\2018 FY Proposals\TIA's\Tract A-19-a Huitt Zollars\2018 Study\Analysis\Synchro\expm.syn EJW/BHI

ГÍ

ΠĒ

<u>[</u>[

()

1

ji.

Intersection Int Delay, s/veh 0.6

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	٦	1	1	3	14			4			4		
Traffic Vol, veh/h	0	651	12	32	77	0	4	0	6	0	0	0	AND THE ADDRESS AND
Future Vol, veh/h	0	651	12	32	77	0	4	0	6	0	0	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	A West and and a set of the
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	Sheri	15	None	1000	14	None		47.8	None	State 1		None	and the second second second
Storage Length	250	-	150	250	-	-	-	-					
Veh in Median Storage,	# -	0	-		0		1151	0			0		
Grade, %	-	0	-	-	0	-		0	-	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	0	708	13	35	84	0	4	0	7	0	0	0	

Major/Minor	Major1	es cons	U.S.	Major2			Minor1	W wate	8 U	Minor2		1211	The management of William
Conflicting Flow All	84	0	0	721	0	0	820	862	708	872	875	42	
Stage 1		0.	たいで	Sec.	() · · · · · · ·	đ.,	708	708		154	154		A CONTRACT OF CONTRACT
Stage 2	-		-	-			112	154		718	721		
Critical Hdwy	4.13	56.5	12.4	4.13	80 P81	1	7.33	6.53	6.23	7.33	6.53	6.93	
Critical Hdwy Stg 1	-		-	-		đ	6.13	5.53	-	6.53	5.53	-	
Critical Hdwy Stg 2	Sala-	1					6.53	5.53		6.13	5.53	1000-2	
Follow-up Hdwy	2.219		-	2.219		-	3.519	4.019	3.319	3.519	4.019	3.319	
Pot Cap-1 Maneuver	1512	12.00		879	21 - 13	17-	280	292	434	258	287	1020	
Stage 1	-		-	-		-	425	437	-	833	770	-	
Stage 2	Mag-	Sile and	1	1.24	2122		881	770	-	419	431	- 100	
Platoon blocked, %													
Mov Cap-1 Maneuver	1512		100	879	1994 - Angel - A	14	272	280	434	246	276	1020	With Street av
Mov Cap-2 Maneuver	-					-	272	280	-	246	276	-	
Stage 1	SPACE A	14			1		425	437		833	739	6(3)	网络马马拉利加马马拉马马斯
Stage 2	-				3 - 5		846	739	-	413	431	-	
Solar - Los Ast Nervice					1.201.000			199		18 3.8	E Eliy 204	34.20	

Approach	EB	WB	NB	SB	
HCM Control Delay, s	0	2.7	15.6	0	
HCM LOS			С	A	

Minor Lane/Major Mymt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR S	BLn1	
Capacity (veh/h)	350	1512		100	879		33 - x	1.44	
HCM Lane V/C Ratio	0.031	-			0.04		-) - :	
HCM Control Delay (s)	15.6	0	- 16 8		9.3		5. S. 4 (0	
HCM Lane LOS	С	Α	-		A			A	
HCM 95th %tile Q(veh)	0.1	0	영제 씨를		0.1	87.2	1. S. 1.	10.4	

N:\Trans\Proposals\2018 FY Proposals\TIA's\Tract A-19-a Huitt Zollars\2018 Study\Analysis\Synchro\expm.syn S EJW/BHI

Synchro 7 - Report Page 2

Appendix C

Forecast Turning Movements

.

in the second second

Ŀ

Ŀ

L

Ē

Ш

1

INTERSECTION: SR 4 & Rover

Eastbound	SR 4	Right Left Thru Right	454 3 207 27			2 0	1	454 3 210 27		36		0	AFA 3 2AF 27
Northbound	Rover	Thru	13	-				13		_	_		13
N		Left	155			27	-	183			0		183
		Right	26					26					96
Westbound	SR 4	Thru	282			48	2	332	12				344
		Left	171					171					171
P	_	Right	ł					-					-
Southbound	Gas Station	Thru	2					2					~
l so		Left	11					4					11
AM Peak Hour			Existing Volumes 11		Approved Development	CMRR	Visitor Center	No Build	Residential Enter	Residential Exit	Retail Enter	Retail Exit	Build

24

2

2

2

PHF 0.920 HV %

0.920

0.920

0.920

PM Peak Hour		S	Southbound	p	-	Westbound	8	-	Northbound	p		Eastbound	
		J	Gas Station			SR 4			Rover			SR 4	
		Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
	Existing Volumes	65	58	3	312	160	34	50	27	187	9	407	204
Approved Development													
	CMRR					t		0				46	23
	Visitor Center					4		0				2	-
	No Build	65	28	3	312	162	34	50	27	187	9	455	ສຶ
	Residential Enter					40							
	Residential Exit											24	
	Retail Enter							19					
	Retail Exit												23
	Build	65	28	9	312	202	34	69	27	187	9	479	251

2 0.920 2 0.920 2 0.920 2 0.920 PHF HV %

Residential 0.0% 40.0% 0.0% 0"0% 0.0% 0.0% %0"0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 40.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% growth rates C Trip Distribution % Exit

Retail	35.0%
	0°0%
	0.0%
	0.0%
	0.0%
35.0%	%0"0
	0.0%
	0.0%
	0.0%
	0.0%
	0*0%
	%0"0
Trip Distribution % Enter	Trip Distribution % Exit

Ē

1

Li

11

INTERSECTION: SR 4 & Sherwood

AM Peak Hour		00	Southbound	P		Westbound		z	Northbound	P		Eastbound	
			SR4			Sherwood			SR 4			Sherwood	
		Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
ш	Existing Volumes	0	0	0	41	606	0	34	0	57	0	68	12
Approved Development													
	CMRR					75		4				2	0
	Visitor Center	-	0	0			3		-		-		
	No Build	*	0	0	41	681	3	38	۲	21	-	70	12
	Residential Enter					5	80				2		
	Residential Exit	22		4								13	
	Retail Enter						0		0		0		
	Retail Exit	0	0	0									
	Build	23	0	4	41	686	11	38	1	57	3	83	12

				Right	104			13		117				
	2	Eastbound	Sherwood	Thru	553			69		622		6		
0.920				Left	0				0	0	2		21	
				Right	129					129				
	2	Northbound	SR 4	Thru	0				0	0			13	
0.920		Z		Left	18			0		18				
				Right	0	×			+	÷	25		19	
	2	Westbound	Sherwood	Thru	95			1		96	15			
0.920		>		Left	134					134				
		P		Right	0				+	+		3		26
	0	Southbound	SR 4	Thru	0		-		1	1				17
PHF 0.920		Ś		Left	0				3	3		15		23
PHF	% AH				Existing Volumes			CMRR	Visitor Center	No Build	Residential Enter	Residential Exit	Retail Enter	Retail Exit
		PM Peak Hour					Approved Development							

т т Т

117

631

26

129

13

18

45

111

134

8

18

41

0.920	2
0.920	2
0.920	2
0.920	2
PHF	% NH

	Residential	
0.0%		0.0%
0.0%		15.0%
%0"0	5.0%	%0.0
0.0%		0.0%
0.0%		0.0%
0.0%		0.0%
0.0%	25.0%	0.0%
0.0%	15.0%	0.0%
0.0%		0.0%
0.0%		5.0%
0.0%		0.0%
%0 0		25.0%
growth rates	Trip Distribution % Enter	Trip Distribution % Exit

Retail	
	0.0%
	0.0%
40.0%	0.0%
	0.0%
25.0%	0.0%
	0"0%
35.0%	0.0%
	0.0%
	0.0%
	40.0%
	25.0%
	35.0%
Trip Distribution % Enter	Trip Distribution % Exit

N:Iransproposals/2019 FY Proposals/T/A's\Tract A-19-a Huitt Zollars\2018 StudyAnalysis\Spreadsheets\tmc rev 1,xk2

and state out

L

11

INTERSECTION: SR 4 & La Vista

AM Peak Hour		^o	Southbound	P	-	Westbound	_	Z	Northbound	, T		Eastbound	
			A-19			SR 4			La Vista			SR4	
		Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
ш	Existing Volumes	0	0	0	0	640	0	5	0	17	0	63	0
Approved Development													
	CMRR					62		+				2	0
	Visitor Center					1						1	
	No Build 0	0	0	0	0	720	0	9	0	17	0	<u>66</u>	0
	Residential Enter						5				17	2	
	Residential Exit	13		49		4							
	Retail Enter									0		0	
	Retail Ext				0	0							
	Build	13	0	49	0	724	2	9	0	17	17	68	0

2

2

N

2

PHF 0.920 HV %

0.920

0.920

0.920

		0	Southbound	0		Westbound	Ð	~	Northbound			Eastbound	_
			A-19			SR4			La Vista			SR4	
		Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
	Existing Volumes	0	0	0	32	11	0	4	0	9	0	651	12
Approved Development													
	CMRR					÷		0				82	2
	Visitor Center					0						0	
	No Build	0	0	0	32	82	0	4	0	9	0	733	14
	Residential Enter						15				56	ъ	
	Residential Exit	6		32		3							
	Retail Enter									11		11	
	Retail Exit				13	13							
a		6	0	32	45	94	15	4	0	17	26	749	14

0.920 \sim 0.920 N 0.920 2 PHF 0.920 HV %

2

0.0% 0.0% 5.0% 0.0% 55.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 15.0% 0.0% 0.0% 0*0% 5.0% 0.0% 0.0% 55.0% 0.0% %0.0 0.0% growth rates 0.0% Trip Distribution % Exit 15.0% Trip Distribution % Enter Trip Distribution % Exit 0.0%

Residential 0.0%

Retail

0.0%

0.0% 20.0%

0.0%

20.0% 0.0%

%0"0

0.0%

0.0%

20.0% 20.0%

0.0%

0.0%

N:Itransproposals/2018 FY Proposals/TIA/s/Tract A-19-a Huitt Zollars/2018 Study/Analysis/Spreadsheets/Imo rev 1 xls3

A subject to a

h

Į.

Ľ

INTERSECTION: SR 4 & Pajarito

AM Peak Hour		°	Southbound	ľ	[Westbound			Northbound			Eastbound	Γ
			Pajarito			SR 4		ū	Grand Canyon	E		SR 4	
		Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
	Existing Volumes 13	13	-	0	0	41	604	6	118	e	43	47	6
		0	0	0	0	0	0	0	0	0	0	0	0
Approved Development													
	CMRR	2	0	0			62		16		9		- +
	Visitor Center					-						-	
	No Build 15	15	Ł	0	0	42	683	6	134	9	49	48	σ
	Residential Enter	18											
	Residential Exit						53						
	Retail Enter									0		0	
	Retail Exit				0	0							
	Build	33	-	0	0	42	736	თ	134	3	49	48	л
	PHF	PHF 0.920			0.920			0.920			0.920		

뢰
<u>ea</u>
Ā
面

		Right	8	0				8				_	8	
2	Eastbound SR 4	Thru	110	0			0	110			Ω		115	
0.920		Left	°	0		0		e					3	0 020
	P	Right	9	0				9			5		11	
2	Northbound	Thru	2	0		+		3					3	
0.920	2	Left	10	0				10					10	0 020
		Right	16	0		-		17		35			52	
2	Westbound SR 4	Thru	58	0			0	58	2001			7	65	
0.920		Left	7	0				7				7	14	0 920
	P	Right	23	0		4		27					27	
4	Southbound Pajarito	Thru	86	0		13		66					66	
PHF 0.920 +V %	s	Left	553	0		84		637	61				698	PHF 0 920
PHF HV %			Existing Volumes			CMRR	Visitor Center	No Build	Residential Enter	Residential Exit	Retail Enter	Retail Exit		рнг
	PM Peak Hour				Approved Development									

0.920	2	
0.9		
0.920	2	
0.920	2	
	2	
0.920		
ΗH	% NH	

	Residential	
0.0%		7000
0.0%		7000
0.0%		%U U
0.0%		%U U
%0.0		%U U
0.0%		70 U%
0.0%		60 0%
0.0%		0 U%
0.0%		%0.0
0.0%		0.0%
0.0%		0.0%
0.0%	60.0%	0.0%
growth rates	Trip Distribution % Enter	Trin Distribution % Exit

	Retail	
0.0%		0.0%
0.0%	10.0%	0.0%
0'N'%		0.0%
0.0%	10.0%	0.0%
0.0%		0.0%
0.0%		0.0%
00.0%		0.0%
0%0*0		10.0%
0.0%		10.0%
0.0%		0.0%
0.0%		0.0%
0.070		0.0%
HIP DISKIDULION 70 CXII	Trip Distribution % Enter	Trip Distribution % Exit 0.0%

N:Itransproposals/2018 FY Proposals/TIA'sITract A-19-a Huitt Zollars/2018 StudyAnalysisiSpreadsheelshtmc rev 1 xls4

Appendix D No Build Intersection Capacity Analysis

ſ

 $\left[\right]$

1

ſ

Ĺ

Ľ.

Ľ

HCM 6th Signalized Intersection Summary 1: Rover & SR 4

1

ГÍ

Π

ſ

Π.

ĺ

11

	۶	-	\mathbf{i}	4	-	×.	1	1	1	1	¥	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٣	1	7	ሻ	1+		٢	1>			4	
Traffic Volume (veh/h)	3	210	27	171	332	26	183	13	454	11	2	
Future Volume (veh/h)	3	210	27	171	332	26	183	13	454	11	2	1
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	C
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	3	228	29	186	361	28	199	14	493	12	2	1
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	293	352	457	461	505	39	745	18	620	258	38	10
Arrive On Green	0.00	0.19	0.19	0.11	0.29	0.29	0.10	0.40	0.40	0.20	0.20	0.20
Sat Flow, veh/h	1781	1870	1585	1781	1714	133	1781	44	1548	478	188	48
Grp Volume(v), veh/h	3	228	29	186	0	389	199	0	507	15	0	0
Grp Sat Flow(s),veh/h/ln	1781	1870	1585	1781	0	1846	1781	0	1592	713	0	0
Q Serve(g_s), s	0.1	4.5	0.5	3.0	0.0	7.5	3.3	0.0	11.2	0.0	0.0	0.0
Cycle Q Clear(g_c), s	0.1	4.5	0.5	3.0	0.0	7.5	3.3	0.0	11.2	3.2	0.0	0.0
Prop In Lane	1.00		1.00	1.00		0.07	1.00		0.97	0.80		0.07
Lane Grp Cap(c), veh/h	293	352	457	461	0	545	745	0	638	305	0	0
V/C Ratio(X)	0.01	0.65	0.06	0.40	0.00	0.71	0.27	0.00	0.79	0.05	0.00	0.00
Avail Cap(c_a), veh/h	466	892	915	489	0	927	745	0	959	505	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	13.2	15.0	10.3	10.1	0.0	12.5	9.5	0.0	10.5	12.9	0.0	0.0
Incr Delay (d2), s/veh	0.0	2.0	0.1	0.6	0.0	1.8	0.2	0.0	2.8	0.1	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	0.0	1.7	0.1	0.9	0.0	2.6	1.0	0.0	3.4	0.1	0.0	0.0
Unsig. Movement Delay, s/veh			and a second of the		A REAL PROPERTY.					and the second		
LnGrp Delay(d),s/veh	13.2	17.0	10.3	10.6	0.0	14.3	9.7	0.0	13.3	13.0	0.0	0.0
LnGrp LOS	В	В	В	В	A	В	А	A	В	В	A	A
Approach Vol, veh/h		260	and the second	S. 1997	575	100	N. Testar	706	51. SE	a little	15	a such
Approach Delay, s/veh	er and a fille	16.2			13.1	SHUD-DUN	A(110135/	12.3		1500-001920	13.0	0.15
Approach LOS		В	1.67/18		В	St SUG. /	144.5.5	B	5		B	1 ares
Timer - Assigned Phs		2	3		5	6	7	8	and the second se		hold the second	or Division
Phs Duration (G+Y+Rc), s	ST 8.3	20.0	8.4	11.5	8.0	12.0	4.1	15.8	A STATE	12.5.10	//	
Change Period (Y+Rc), s	100000	4.0	4.0	4.0	4.0	4.0	4.1	4.0	Berry Insta		19 SV 17 Y	SMILLIN
Max Green Setting (Gmax), s		24.0	5.0	19.0	4.0	4.0	4.0	20.0		144600.00	L. R. Cont	-
Max Q Clear Time (g_c+11), s	A Carlos	13.2	5.0	6.5	5.3	5.2	2.1	9.5	3.2.3.17	MI PILITA	active 198	
Green Ext Time (p_c), s	action in	2.8	0.0	1.0	0.0	0.0	0.0	9.5		The state of the	1000	430.10
		2.0	0.0	1.0	0.0	0.0	0.0	1.1		New York		NO.
Intersection Summary HCM 6th Ctrl Delay			13.2	2010 AS 4		T MAR						1.000
HCM 6th LOS		Constant Sec.	B	Concession of the	and the second second	a source of	ate all a series	2.48.2.0	0.17 84.15	WWW S	281/ 24	S. F. U.S.
			D									

N:\Trans\Proposals\2018 FY Proposals\TIA's\Tract A-19-a Huitt Zollars\2018 Study\Analysis\Synchro\nbam.syn EJW/BHI

HCM Signalized Intersection Capacity Analysis 4: Grand Canyon/Pajarito & SR 4

1

ГÍ

[]

ſ

[]

1

White Rock Master Plan Tract A-19 No Build AM

	٠	-	\mathbf{r}	1	-	*	1	1	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	1	7	٦	1	7	ň	<u></u>		ň	1>	- C
Traffic Volume (vph)	49	48	9	0	42	683	9	134	3	15	1	0
Future Volume (vph)	49	48	9	0	42	683	9	134	3	15	1	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0		4.0	4.0	4.0	4.0		4.0	4.0	and the second second
Lane Util. Factor	1.00	1.00	1.00		1.00	1.00	1.00	1.00		1.00	1.00	Thenk
Frt	1.00	1.00	0.85		1.00	0.85	1.00	1.00		1.00	1.00	
Fit Protected	0.95	1.00	1.00		1.00	1.00	0.95	1.00		0.95	1.00	and the second
Satd. Flow (prot)	1770	1863	1583		1863	1583	1770	1857		1719	1810	
Flt Permitted	0.83	1.00	1.00		1.00	1.00	0.78	1.00		0.78	1.00	AN IS.
Satd. Flow (perm)	1552	1863	1583		1863	1583	1461	1857		1419	1810	_
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	53	52	10	0	46	742	10	146	3	16	1	0
RTOR Reduction (vph)	0	0	7	0	0	0	0	2	0	0	0	0
Lane Group Flow (vph)	53	52	3	0	46	742	10	147	0	16	1	0
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	2%	2%	2%	5%	5%	5%
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Free	pm+pt	NA		pm+pt	NA	
Protected Phases	7	4	14. S.S.	3	8	CALLER.	5	2	1. A. S. A.	1	6	12 Min
Permitted Phases	4		4	8		Free	2			6		
Actuated Green, G (s)	6.5	6.5	6.5		0.8	24.0	5.5	5.1		5.5	5.1	
Effective Green, g (s)	6.5	6.5	6.5		0.8	24.0	5.5	5.1		5.5	5.1	-
Actuated g/C Ratio	0.27	0.27	0.27		0.03	1.00	0.23	0.21	S. Martin	0.23	0.21	the Mile
Clearance Time (s)	4.0	4.0	4.0		4.0		4.0	4.0		4.0	4.0	
Vehicle Extension (s)	3.0	3.0	3.0		3.0	i Neers	3.0	3.0		3.0	3.0	10 53
Lane Grp Cap (vph)	435	504	428		62	1583	339	394		330	384	
v/s Ratio Prot	0.01	0.03		Souther in	0.02	2. 32	0:00	0.08	12:00	0.00	0.00	
v/s Ratio Perm	0.02		0.00			c0.47	0.01			0.01		and an a state of the state of
v/c Ratio	0.12	0.10	0.01		0.74	0.47	0.03	0.37		0.05	0.00	1212
Uniform Delay, d1	6.6	6.6	6.4		11.5	0.0	7.2	8.1		7.2	7.4	-
Progression Factor	1.00	1.00	1.00		1.00	1.00	1.00	1.00	NUL PAR	1.00	1.00	1-1-1-S
Incremental Delay, d2	0.1	0.1	0.0		37.6	1.0	0.0	0.6		0.1	0.0	
Delay (s)	6.7	6.7	6.4		49.1	1.0	7.2	8.7		7.3	7.4	STANKS -
Level of Service	A	А	А		D	А	А	А		А	А	
Approach Delay (s)		6.7			3.8		S. Mail	8:6		ANT RACE	7.3	a Sal
Approach LOS		А			А			А			А	
Intersection Summary				1. 1. 1. 1.				(Stability	11. 11. 11.	$\mathbb{T}^{[n]} \to \mathbb{R}^{[n]}$		0.370
HCM 2000 Control Delay			4.9	H	CM 2000	Level of	Service		А			
HCM 2000 Volume to Capa	acity ratio		1.41		N. Take	10 - A	-Kugalet	1947 A.R.S	din (Kile	10- 93E	1 -0.6-	
Actuated Cycle Length (s)			24.0	SL	um of lost	time (s)			16.0			
Intersection Capacity Utilization	ation	(101. <u>88</u> .24	28.5%	IC	U Level o	of Service		and south	Α		NO. XXVA	ANR)
Analysis Period (min)			15									
c Critical Lane Group		QL 24	nel (150)		Sec. The	N THE		CHERE THE THE	40.70	Sal Ba	Carrie Ma	1240

N:\Trans\Proposals\2018 FY Proposals\TIA's\Tract A-19-a Huitt Zollars\2018 Study\Analysis\Synchro\nbam.syn Sync EJW/BHI

HCM 6th Signalized Intersection Summary 1: Rover & SR 4

ſ

1

Π

ſ

ſ

ſ

ŕ

P

11

	۶	-	\mathbf{i}	4	-	*	1	†	1	1	¥	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	↑	۲	ή	Î ≯		ሻ	4Î			4	
Traffic Volume (veh/h)	6	455	228	312	162	34	50	27	187	65	28	3
Future Volume (veh/h)	6	455	228	312	162	34	50	27	187	65	28	3
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	and states in the second	No			No			No			No	
Adj Sat Flow, veh/h/in	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	7	495	248	339	176	37	54	29	203	71	30	3
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	. 2	2
Cap, veh/h	555	616	591	499	718	151	484	51	357	231	61	5
Arrive On Green	0.01	0.33	0.33	0.16	0.48	0.48	0.04	0.25	0.25	0.12	0.12	0.12
Sat Flow, veh/h	1781	1870	1585	1781	1499	315	1781	202	1414	812	501	39
Grp Volume(v), veh/h	7	495	248	339	0	213	54	0	232	104	0	0
Grp Sat Flow(s), veh/h/ln	1781	1870	1585	1781	0	1814	1781	0	1616	1353	0	0
Q Serve(g_s), s	0.1	11.1	5.3	5.1	0.0	3.2	1.1	0.0	5.8	2.8	0.0	0.0
Cycle Q Clear(g_c), s	0.1	11.1	5.3	5.1	0.0	3.2	1.1	0.0	5.8	3.3	0.0	0.0
Prop In Lane	1.00		1.00	1.00		0.17	1.00		0.88	0.68		0.03
Lane Grp Cap(c), veh/h	555	616	591	499	0	868	484	0	407	297	0	0
V/C Ratio(X)	0.01	0.80	0.42	0.68	0.00	0.25	0.11	0.00	0.57	0.35	0.00	0.00
Avail Cap(c_a), veh/h	697	775	725	570	0	949	562	0	881	621	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	10.1	14.0	10.7	9.1	0.0	7.1	14.8	0.0	15.0	19.1	0.0	0.0
Incr Delay (d2), s/veh	0.0	4.9	0.5	2.7	0.0	0.1	0.1	0.0	1.3	0.7	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	0.0	4.5	1.5	1.6	0.0	0.9	0.4	0.0	2.0	1.0	0.0	0.0
Unsig. Movement Delay, s/veh	1											
LnGrp Delay(d),s/veh	10.1	18.9	11.2	11.8	0.0	7.2	14.9	0.0	16.2	19.8	0.0	0.0
LnGrp LOS	В	В	В	В	А	А	В	А	В	В	А	А
Approach Vol, veh/h	New York	750	100	ense s	552	122	Sussel.	286	Sale Swale	1. Dec. 20	104	2.
Approach Delay, s/veh		16.3			10.0		and the second second	16.0	Commentation of	ALL DO DO DO	19.8	ALC: NOTE: N
Approach LOS	See. 1	В			В		SHEERS	В	allen an	S. VISTOR	В	1 2 9
Timer - Assigned Phs	B (1)	2	3	4	5	6	7	8		1000		area a
Phs Duration (G+Y+Rc), s		15.6	11.2	19.1	6.0	9.6	4.3	26.0				
Change Period (Y+Rc), s		4.0	4.0	4.0	4.0	4.0	4.0	4.0	DOL:NO.	21.021115	A Marine Pr	Contraction of
Max Green Setting (Gmax), s	Nile-12	25.0	9.0	19.0	4.0	17.0	4.0	24.0	Sec. 1	a a a a a a a a a a a a a a a a a a a	1000	AVC-28
Max Q Clear Time (g_c+l1), s		7.8	7.1	13.1	3.1	5.3	2.1	5.2	our official series	COLORGION S		00000
Green Ext Time (p_c), s	1983	1.4	0.2	2.0	0.0	0.4	0.0	1.1	1932 (Kan 10	vi suri 20		1
Intersection Summary				an witten?	510	Direction of the		Line of the second	North Contraction	STELLS	Color Train	
HCM 6th Ctrl Delay			14.4			Westerner		Non West	action		C. State	
HCM 6th LOS	20132-0		a contraction of the second seco				20-01-W7		1939/12		webs - A in	100
			⊛ B									

N:\Trans\Proposals\2018 FY Proposals\TIA's\Tract A-19-a Huitt Zollars\2018 Study\Analysis\Synchro\nbpm.syn EJW/BHI

Synchro 7 - Report Page 1

Exhibit 1

HCM Signalized Intersection Capacity Analysis <u>4: Grand Canyon/Pajarito & SR 4</u>

White Rock Master Plan Tract A-19 No Build PM

	٦	-	\mathbf{i}	4	-		1	Ť	1	1	Ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ľ	1	7	ň	↑	7	ň,	Þ		ň	1.	
Traffic Volume (vph)	3	110	8	7	58	17	10	3	6	637	99	27
Future Volume (vph)	3	110	8	7	58	17	10	3	6	637	99	27
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	-	4.0	4.0	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	Asterio	1.00	1.00	1.2.5.3
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.90		1.00	0.97	and the second second
Fit Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.	0.95	1.00	A.L.
Satd. Flow (prot)	1770	1863	1583	1770	1863	1583	1770	1667		1770	1804	and the second se
Flt Permitted	0.93	1.00	1.00	0.93	1.00	1.00	1.00	1.00	12.50	0.83	1.00	1.1992.1
Satd. Flow (perm)	1733	1863	1583	1733	1863	1583	1863	1667		1552	1804	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	3	120	9	8	63	18	11	3	7	692	108	29
RTOR Reduction (vph)	0	0	8	0	0	0	0	7	0	0	13	0
Lane Group Flow (vph)	3	120	1	8	63	18	11	3	0	692	124	0
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Free	pm+pt	NA		pm+pt	NA	ASIEN
Protected Phases	7	4	101 20101	3	8		5	2		1	6	0000000
Permitted Phases	4	200000	4	8	9. 28.	Free	2	10,354		6	(Circles)	1000
Actuated Green, G (s)	4.8	4.3	4.3	4.8	4.3	40.0	1.3	0.8	MC INCOME	23.2	18.7	No. of Concession, Name
Effective Green, g (s)	4.8	4.3	4.3	4.8	4.3	40.0	1.3	0.8		23.2	18.7	10.2011
Actuated g/C Ratio	0.12	0.11	0.11	0.12	0.11	1.00	0.03	0.02		0.58	0.47	Call States
Clearance Time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0		4.0	4.0	and Safe
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	POLA STOR	3.0	3.0	4162 141141	3.0	3.0	ALCONOMY.
Lane Grp Cap (vph)	208	200	170	208	200	1583	59	33	1.5 1.6 1	1000	843	352.73
v/s Ratio Prot	0.00	c0.06		0.00	0.03	1000	0.00	0.00	and a second second	c0.32	0.07	- unevi
v/s Ratio Perm	0.00	all and the	0.00	0.00	in the	c0.01	0.00	1	CONTRACT	c0.08	0.01	Seriel.
v/c Ratio	0.01	0.60	0.01	0.04	0.32	0.01	0.19	0.10		0.69	0.15	A
Uniform Delay, d1	15.5	17.0	15.9	15.6	16.5	0.0	16.2	19.2	Contractor	5.8	6.1	1
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	arresta.
Incremental Delay, d2	0.0	4.8	0.0	0.1	0.9	0.0	1.5	1.3	233,122	2.1	0.1	in the state of
Delay (s)	15.5	21.8	16.0	15.6	17.4	0.0	17.8	20.5		7.9	6.2	
Level of Service	В	С	В	В	В	A	В	C	1949-1219	A	A	
Approach Delay (s)		21.3	Division of the		13.7		and the second s	19.1			7.6	CONTROL .
Approach LOS	and a start	C	SH \$2.5		В	With Ma		B		NUSSE /	A	a la co
Intersection Summary				de service	15112-10-	1.0			-8.000	12.816	a salar ya	II. SUDI
HCM 2000 Control Delay	ale say		10.0	H	CM 2000	Level of	Service	and the same of	В	Stark a	14.18	1-21
HCM 2000 Volume to Cap	acity ratio		0.77							No. 10 Tot I O		
Actuated Cycle Length (s)		glare,	40.0	Su	um of lost	t time (s)	1.316	100	16.0	5.9 Mile /	FURNER V	915 2
Intersection Capacity Utiliz	ation		54.4%		U Level		9		A			DHOLDHELL
Analysis Period (min)		20 NORA	15	and a second	Strawes		A STAN	1. 1.1.1	10000			100
c Critical Lane Group			and a second second			Cent Photos .	Manual Proven			X-IIII-650		COLUMN TRANS

c Critical Lane Group

ſ

ſ

1

F.

ſ

Π

[].

Γ

ľ

ſ

F

1

1

Intersection			91024S		12.50			57.5	24,2,48	a Print		1816
Int Delay, s/veh	1.9											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	1	7	۳j	1	ř	٢	1		ካ	4	
Traffic Vol, veh/h	1	70	12	41	681	3	38	1	57	1	0	0
Future Vol, veh/h	1	70	12	41	681	3	38	1	57	1	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized		10, 8,20	None	NW -	121-	Nóne	1501	1.1	None	S	131.01	None
Storage Length	250	-	150	250	-	150	150	-	(5:	150	-	-
Veh in Median Storage	2,# -	.0	利 道	0,725	0	1.14	×	0	3 2 4		0	We we
Grade, %	-	0		-	0	-		0			0	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	0	0	0
Mvmt Flow	1	76	13	45	740	3	41	1	62	1	0	0
Major/Minor	Major1	1840		Major2		02011-0	Minor1	STATION		Minor2	PENC	
Conflicting Flow All	743	0	0	89	0	0	910	911	76	946	921	740
Stage 1		end in	10568	19060 20	CEOLES		78	78		830	830	19 Altone
Stage 2			1911		-	- Short	832	833	-	116	91	-
Critical Hdwy	4.12	17 - A.		4.12	1.4.5ES	2.0%	7.12	6.52	6.22	7.1	6.5	6.2
Critical Hdwy Stg 1	-				ar yres		6.12	5.52	0.22	6.1	5.5	0.2
Critical Hdwy Stg 2	1910	12 13 12		0.0172	1.02	a. 1977	6.12	5.52	2018 -	6.1	5.5	1997 (P. 1997)
Follow-up Hdwy	2.218	-		2.218	A Distances		3.518	4.018		3.5	4	3.3
Pot Cap-1 Maneuver	864	No. No.		1506	2020	Schiros	255	274	985	243	273	420
Stage 1	-00	-	-	1000	100051	-	931	830		367	388	420
Stage 2	21205	Realized	aces.		501.2	in the second	363	384	in the second	894	823	1 342
Platoon blocked, %			-	AUL 25.	-	-	000	004	non de	0.0%	023	al 905
Mov Cap-1 Maneuver	864	Classify.		1506	Askin .		249	266	985	222	265	420
Mov Cap-1 Maneuver	- 004		nicentries)	1000	0.2004		249	266	300	222	265	420
Stage 1	New S	1	191.2100	invite:	81.000	2000	930	829	61.82	367	376	andezi
Stage 2	noxues.	ALL STOR	SCIQUAR.			1000	352	372		836	822	Star 1
Oldye 2		Car shi	R8475	C LANKE OF	Million St.	9783	352	JIZ	n we	000	022	interior.
Approach	EB	1000	in the second	WB		0.022	NB	- Cure	P-1.54	SB		the second
Approach HCM Control Delay, s	0.1		Winder	0.4			14.3		6.2	21.3		
HCM LOS	0.1	N. 1993	NFS N	0.4		10000	14.3 B	64- E.)	84 U. I.	21.5 C	443	
	328	JEH .					D		and the second	U.	S & W	al sta
Minor Lane/Major Mvm	ut	NBLn11	NRI n2	EBL	EBT	EBR	WBL	WBT		SBLn1 S		
Capacity (veh/h)	2 	249	941	864	LDI	CDIN -	1506	1101				10 -01
HCM Lane V/C Ratio	0.0400		0.067		1.000 3010	-						
					-	-	0.03	-		0.005	-	di tata ang
HCM Control Delay (s)	13:015	22.3	9.1	9.2			7.5	in a m		21.3	0	- test
HCM Lane LOS		C	A	A	-		A	-	-	C	А	
HCM 95th %tile Q(veh	1	0.6	0.2	0		1)72.0	0.1	100	19	0		io, entre

N:\Trans\Proposals\2018 FY Proposals\TIA's\Tract A-19-a Huitt Zollars\2018 Study\Analysis\Synchro\nbam.syn EJW/BHI

1.00 F

1.1

Π

Π

n [

<u>[</u>[

Ľ.

LL

Page 2

Intersection	1	14
Int Delay, s/veh		

0.3

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	٢	1	1	7	≜ ↑₽			4			4		
Traffic Vol, veh/h	0	66	0	0	720	0	6	0	17	0	0	0	AND A DESCRIPTION OF A
Future Vol, veh/h	0	66	0	0	720	0	6	0	17	0	0	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	and the second second second
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	38.47	-	None	31. 4	ų s -	None		and the	None		diana.	None	AND MOTOR STATISTICS
Storage Length	250	12	150	250	4	12	-	-	-	-	-	-	
Veh in Median Storage,	# -	0	2052	Sec. 191	0	1	CONSE !!	0	() () () ()		0	1	Thursday and the second states
Grade, %	-	0	-	<u>j</u> 2	0	4	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	A CONTRACTOR OF
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Vivmt Flow	0	72	0	0	783	0	7	0	18	0	0	0	us dunta quanto de las

Major/Minor	Major1			Major2		199	Minort		i ang an	Minor2	in the	11201	
Conflicting Flow All	783	0	0	72	0	0	464	855	72	864	855	392	
Stage 1	S. La		1.55		9	山の言葉	72	72		783	783	0.100	Provention Contraction
Stage 2	1		121	2	121	2	392	783		81	72	-	
Critical Hdwy	4.13		1.0	4.13	10.544	12	7.33	6.53	6.23	7.33	6.53	6.93	
Critical Hdwy Stg 1	14	4	-	H	(- (-	6.13	5.53		6.53	5.53	-	
Critical Hdwy Stg 2	100 200	HAR AND	1	(1.) B	12002	- 8	6.53	5.53	NY NE	6.13	5.53	N18-2	Carles and Course Man
Follow-up Hdwy	2.219	-	-	2.219		-	3.519	4.019	3.319	3.519	4.019	3.319	
Pot Cap-1 Maneuver	833	and y	1	1527	-	- 1 S	495	295	990	261	295	608	
Stage 1	-		-		•	-	937	835	-	354	404	-	
Stage 2	AVC 31	9 - TE - 1		1.14	New St.		605	404	C STORE	927	835	Acres -	Contraction of the second
Platoon blocked, %			•		-								
Mov Cap-1 Maneuver	833			1527	MALE: ST	34	495	295	990	256	295	608	The second second second
Mov Cap-2 Maneuver		-			-	-	495	295	-	256	295	-	
Stage 1		STOR -	18-5	1.		183	937	835	41. 3	354	404	1. A V	
Stage 2	-	-	÷.,				605	404	-	910	835	-	
	BUS MA	14.45		63.09		a Bill	1.22		8.2800		eridis (WWW.	
	THE REAL PROPERTY.	and the second second	-		-		COLUMN TO AND			-			

Approach	EB	WB	NB	SB SB	
HCM Control Delay, s	0	0	9.7	0	
HCM LOS			A	А	
A REAL PROPERTY AND REAL					
Minor Lane/Major Mvmt	NBLn1	EBL EBT EBR	WEL WET WERS	BLn1	

Capacity (veh/h)	785	833	2.01	-	- 23	1527	1		
HCM Lane V/C Ratio	0.032	-		-	-	-		-	
HCM Control Delay (s)	9.7	0		- 10	/ Par	0	57 C		0
HCM Lane LOS	A	A		-	-	А		÷	A
HCM 95th %tile Q(veh)	0.1	0			1	0	4.0447	10.00	en nya Marina dalam ya Maraka akina da pasan da Mara

N:\Trans\Proposals\2018 FY Proposals\TIA's\Tract A-19-a Huitt Zollars\2018 Study\Analysis\Synchro\nbam.syn Synchro 7 - Report EJW/BHI

Intersection	
Int Delay, s/veh	3.7

T.

5

[]

E

1

and the second

1

HCM 95th %tile Q(veh)

0.4 1.3

0

-

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	٦	↑	7	ή	1	7	ሻ	4		۲	₽		
Traffic Vol, veh/h	0	622	117	134	96	1	18	0	129	3	1	1	New York And States
Future Vol, veh/h	0	622	117	134	96	1	18	0	129	3	1	1	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	West Classics Constru
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized		5.31÷	None	1995-1	Wast	None		Wester !!	None	3 3 3 3	A THINK	None	STATES ASSAULT
Storage Length	250	-	150	250	-	150	150	5		150	-	-	
Veh in Median Storage,	# -	0	- 101	7. S. F	0	77 N.		0	Child -		0	il le ce	
Grade, %	-	0	-	-	0	-	-	0	-		0		
Peak Hour Factor	92	.92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	0	676	127	146	104	1	20	0	140	3	1	1	Stranger States of the States of the

Major/Minor	Major1		∆ ⁿ _)	Major2			Minor1	1		Minor2	ALC: U		A STATE OF THE	WEIZZ
Conflicting Flow All	105	0	0	803	0	0		1073	676	1206	1199	104	1	
Stage 1	191 _	2. 2. 18	1940 -	14.84	G NE	1208	676	676	1945/712		396	1 1 1 1		1.5
Stage 2	-		-	-		-	398	397	-	810	803	-		
Critical Hdwy	4.12		1978	4.12	19. Jul		7.12	6.52	6.22	7.12	6.52	6:22	in the state of the	1000
Critical Hdwy Stg 1	-		-				6.12	5.52	-	6.12	5.52	-		
Critical Hdwy Stg 2	913	114.00	1102	1000		4.56	6.12	5.52	And-	6.12	5.52	1. Y.		101
Follow-up Hdwy	2.218			2.218			3.518	4.018	3.318	3.518	4.018	3.318		
Pot Cap-1 Maneuver	1486		1.4	821	5.14	1	198	220	453	160	185	951		1-1) m ⁻¹
Stage 1	-		-		17	-	443	453	-	629	604	-		
Stage 2			1	327		(12) e	628	603	-	374	396	Shier		
Platoon blocked, %			5		17									
Nov Cap-1 Maneuver	1486	Photos 23	1.4.2	821		1.1	170	181	453	95	152	951	12102 - 372 - 26A	
Nov Cap-2 Maneuver	-			-	-	-	170	181		95	152	-		
Stage 1	15.00	(Maria	2. T -	Kelle.			443	453	in the	629	496	and a	Marto P. C. Martin	
Stage 2	-		-				515	496		258	396	-		
	T dues	保护管理	1 2420	AL 5511			- 16 A.	(List)	10.1	21.00			in and the second	
Approach	EB			WB	2015 -1 10		NB	1	5-5-Y	SB	1.11	- 3. 	i and i sub-s	1
ICM Control Delay, s	0			6			18	12.197		34.1	RUG IN			0.22
HCM LOS					ALL DE LE CO		С	Coverage and	Contraction (D	10 2 million		No. of Contraction	1000
THURSDAY AND	Sie.	18118		REAL	Series.	18.2.5	SACE)	1.2.2		1/13	- Server		a state and	19 789
Minor Lane/Major Mvm	nt 👘	NBLn11	VBLn2	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1	SBLn2	di di si		
Capacity (veh/h)	1920	170	453	1486		-	821	2. ST4		95	262	44.23	and the second	1.00
HCM Lane V/C Ratio	and the second second	0.115	0.31	-	-		0.177	-	-	0.034	a service of the serv		THE REAL PROPERTY OF	
HCM Control Delay (s)	sheer -	28.9	16.5	0	San al	1.0	10.3	Q.C 44.	1403	44.2	18.9	1914.4-16	ANA RESIDENCE	N 19 517
HCM Lane LOS	and services	D	C	A	-	- 1	В		-	E	C	ACCOUNT OF THE		A NO
		_												

N:\Trans\Proposals\2018 FY Proposals\TIA's\Tract A-19-a Huitt Zollars\2018 Study\Analysis\Synchro\nbpm.syn Synch EJW/BHI

0.6

0

0.1

4

HCM 6th TWSC 3: La Vista & SR 4

T

Г

ľ

ſ

ſſ.

ľ

ſ

1

ľ

L

Intersection	i in
Int Delay, s/veh	

0.6

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	3	1	1	3	1			4			4>		
Traffic Vol, veh/h	0	733	14	32	78	0	4	0	6	0	0	0	
Future Vol, veh/h	0	733	14	32	78	0	4	0	6	0	0	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	When the second second second
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	S	1.1.4	None	- 15.2	1. A.	None	1.	3990	None	44.1	1. 199	None	State of the state of the state
Storage Length	250	-	150	250	-	-	-	-			-	-	
Veh in Median Storage,	# -	0		141 2	0		SU10-3	0	14-34	14-18	0	20.20	n de Rusie et la company
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	a water of the Philippine state
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	0	797	15	35	85	0	4	0	7	0	0	0	

Major/Minor	Major1		1.80	Major2			Minor1	<u>Com</u>	n. a	Minor2	-221 - 2	C.C.	
Conflicting Flow All	85	0	0	812	0	0	910	952	797	963	967	43	
Stage 1		- 4		-	10.040	30	797	797	S	155	155	-	
Stage 2	16	12	(A)	120		14	113	155	-	808	812	-	
Critical Hdwy	4.13	1000		4.13		35	7.33	6.53	6.23	7.33	6.53	6.93	
Critical Hdwy Stg 1	115	4	- 1 <u>8</u> -	4			6.13	5.53	-	6.53	5.53	-	
Critical Hdwy Stg 2	14.1.27	10. Ja	374		S. 16	0.52	6.53	5.53		6.13	5.53	1.11.14	The start will a second
Follow-up Hdwy	2.219	<u>14</u>	24	2.219	¥		3.519	4.019	3.319	3.519	4.019	3.319	
Pot Cap-1 Maneuver	1511	「長くの	NE	812	A		242	259	386	222	253	1018	We down of the state
Stage 1	-			•	×.		379	398	-	832	769	-	
Stage 2	54 - 77 2 -		1	14	- ASA	-	880	769		374	391	1.E.C	
Platoon blocked, %					-	-							
Mov Cap-1 Maneuver	1511		1	812	100	-	234	248	386	211	242	1018	ALCONTRACTOR AND AND
Mov Cap-2 Maneuver			-	•	-	-	234	248	-	211	242	-	
Stage 1	01-021	Ning 10		"Sine"		1	379	398	8.4814	832	736	Wenne	
Stage 2		-	-	÷.	Ξ.	-	842	736	-	368	391	-	
I DE LE CONTRACTOR DE LE C					AND SAMPLE		135.128	M. anto			235-11-	MARK	stiller Steller = Log applica

Approach	EB		WB	1. 1. A.	S. 1993	NB	- 10 P		CD
		and and a		Personal and		_	ogen in		SB
HCM Control Delay, s	0		2.8			17.2			0
HCM LOS						C			Α
		1634	18	258.7	15-145	1.00	W. Ph		1.1
Minor Lane/Major Mymt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1	No.
Capacity (veh/h)	306	1511	Anne	111. A	812	3.48		a Varia	
HCM Lane V/C Ratio	0.036	-		4	0.043	-	-	-	
HCM Control Delay (s)	17.2	0	Sec. 1	11.4	9.6	1217	44127	0	6 BANA
HCM Lane LOS	C	А	-	÷	А		-	А	
HCM 95th %tile Q(veh)	0.1	0	1111		0.1		1000	C. Charles	South Sec.

N:\Trans\Proposals\2018 FY Proposals\TIA's\Tract A-19-a Huitt Zollars\2018 Study\Analysis\Synchro\nbpm.syn Synchro\nbpm.syn S

Appendix E

Г

T.

П

Π.

Г

ſ

Г

- And

Ľ

Build Intersection Capacity Analysis

HCM 6th Signalized Intersection Summary 1: Rover & SR 4

	1	-	\mathbf{i}	*	-	*	1	1	1	1	Ŧ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٣	1	7	ሻ	T.		٦	4			4	
Traffic Volume (veh/h)	3	246	27	171	344	26	183	13	454	11	2	1
Future Volume (veh/h)	3	246	27	171	344	26	183	13	454	11	2	1
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	3	267	29	186	374	28	199	14	493	12	2	1
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	298	389	482	448	537	40	728	17	612	245	36	9
Arrive On Green	0.00	0.21	0.21	0.11	0.31	0.31	0.10	0.40	0.40	0.20	0.20	0.20
Sat Flow, veh/h	1781	1870	1585	1781	1719	129	1781	44	1548	441	175	44
Grp Volume(v), veh/h	3	267	29	186	0	402	199	0	507	15	0	0
Grp Sat Flow(s),veh/h/ln	1781	1870	1585	1781	0	1847	1781	0	1592	660	0	0
Q Serve(g_s), s	0.1	5.5	0.5	3.1	0.0	8.0	3.4	0.0	11.8	0.0	0.0	0.0
Cycle Q Clear(g_c), s	0.1	5.5	0.5	3.1	0.0	8.0	3.4	0.0	11.8	3.8	0.0	0.0
Prop In Lane	1.00		1.00	1.00		0.07	1.00		0.97	0.80		0.07
Lane Grp Cap(c), veh/h	298	389	482	448	0	577	728	0	630	290	0	0
V/C Ratio(X)	0.01	0.69	0.06	0.42	0.00	0.70	0.27	0.00	0.80	0.05	0.00	0.00
Avail Cap(c_a), veh/h	464	854	876	469	0	888	728	0	918	470	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	13.1	15.2	10.3	10.2	0.0	12.6	10.0	0.0	11.1	13.4	0.0	0.0
Incr Delay (d2), s/veh	0.0	2.2	0.1	0.6	0.0	1.5	0.2	0.0	3.4	0.1	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	0.0	2.1	0.2	0.9	0.0	2.7	1.1	0.0	3.8	0.1	0.0	0.0
Unsig. Movement Delay, s/veh												and the second
LnGrp Delay(d),s/veh	13.1	17.4	10.3	10.8	0.0	14.1	10.2	0.0	14.5	13.5	0.0	0.0
LnGrp LOS	В	В	В	В	А	В	В	А	В	В	A	A
Approach Vol, veh/h	38.879	299	1221613		588	3-25-24	43. 6 34	706	2	12.5- 3	15	0.01
Approach Delay, s/veh		16.7			13.1	Conceptible and	Average and a	13.3	Contraction and Contraction	CONCURSING.	13.5	DO-ESTIMAX.
Approach LOS	Sec. 1	В		N 15 18	В			В		Line in	В	
Timer - Assigned Phs	fin da	2	3	4	5	6	7	-8	V. I E			1.54
Phs Duration (G+Y+Rc), s	an ti s	20.5	8.5	12.6	8.0	12.5	4.1	17.0	1426.50	5	5 . V . K.	
Change Period (Y+Rc), s		4.0	4.0	4.0	4.0	4.0	4.0	4.0			ANT DC MINE COMP.	PROPERTY.
Max Green Setting (Gmax), s	and the	24.0	5.0	19.0	4.0	16.0	4.0	20.0		5/6-2746	w (best)	
Max Q Clear Time (g_c+I1), s		13.8	5.1	7.5	5.4	5.8	2.1	10.0	the second second	and the second se		NUMPERS,
Green Ext Time (p_c), s	14 - S. M.	2.7	0.0	1.2	0.0	0.0	0.0	1.7		BRAN		
Intersection Summary						The second		Pir Pir				
HCM 6th Ctrl Delay	12.000	64 X 195	13.8	Section 1	81. S. 2 S	a itias		Same	1990 A.	TA Sal	Strait?	1012
HCM 6th LOS			В									

N:\Trans\Proposals\2018 FY Proposals\TIA's\Tract A-19-a Huitt Zollars\2018 Study\Analysis\Synchro\bam.syn EJW/BHI

HCM Signalized Intersection Capacity Analysis 4: Grand Canyon/Pajarito & SR 4

1

T.

n.

Г

ľ

Í

Ľ

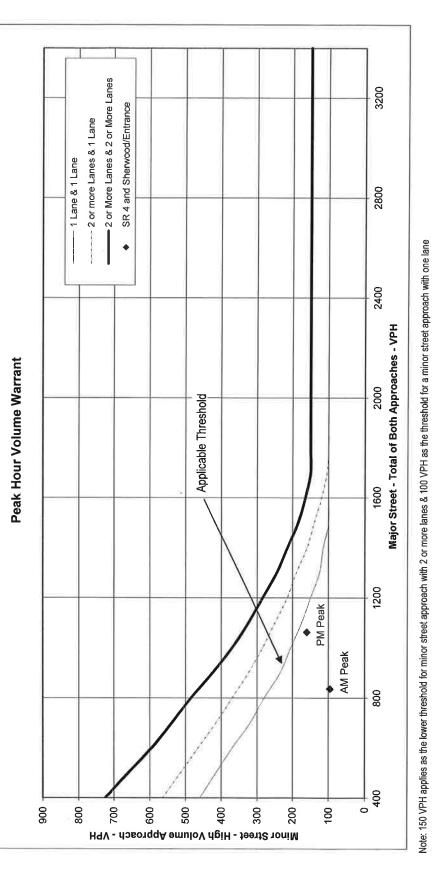
L

White Rock Master Plan Tract A-19 Build AM

	٦	-	$\mathbf{\hat{v}}$	•	-		1	1	1	1	Ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	4	1	1	ሻ	1	7	ň	¢		٢	<u></u>	
Traffic Volume (vph)	49	48	9	0	42	736	9	134	3	33	1	0
Future Volume (vph)	49	48	9	0	42	736	9	134	3	33	1	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0		4.0	4.0	4.0	4.0		4.0	4.0	
Lane Util. Factor	1.00	1.00	1.00		1.00	1.00	1.00	1.00	in an	1.00	1.00	
Frt	1.00	1.00	0.85		1.00	0.85	1.00	1.00		1.00	1.00	
Fit Protected	0.95	1.00	1.00		1.00	1.00	0.95	1.00	141.978	0.95	1.00	
Satd. Flow (prot)	1770	1863	1583		1863	1583	1770	1857		1736	1827	
FIt Permitted	0.67	1.00	1.00	R. Sily H	1.00	1.00	0.78	1.00	Server 1	0.78	1.00	A
Satd. Flow (perm)	1242	1863	1583		1863	1583	1461	1857		1433	1827	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	53	52	10	0	46	800	10	146	3	36	1	0
RTOR Reduction (vph)	0	0	7	0	0	0	0	2	0	0	0	0
Lane Group Flow (vph)	53	52	3	0	46	800	10	147	0	36	1	0
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	2%	2%	2%	4%	4%	4%
Turn Type	pm+pt	NA	pm+ov	pm+pt	NA	Free	pm+pt	NA		pm+pt	NA	
Protected Phases	7	4	5	3	8	1100	5	2		pm - pt	6	CI. STATUS
Permitted Phases	4		4	8	N HYBRIT	Free	2		1111111111111	6	ARC AND	Den al la constance
Actuated Green, G (s)	7.1	7.1	7.6	or entroles	2.0	24.7	5.6	5.1		5.6	5.1	The state
Effective Green, g (s)	7.1	7.1	7.6		2.0	24.7	5.6	5.1		5.6	5.1	MARCH SC
Actuated g/C Ratio	0.29	0.29	0.31	12	0.08	1.00	0.23	0.21	21.0.01	0.23	0.21	10000
Clearance Time (s)	4.0	4.0	4.0		4.0		4.0	4.0	March and Back	4.0	4.0	Contraction of the
Vehicle Extension (s)	3.0	3.0	3.0	and the	3.0	Sand in	3.0	3.0	-	3.0	3.0	8 441
Lane Grp Cap (vph)	380	535	743	Local Property	150	1583	337	383	124 132 24	331	377	COLUMN STATES
v/s Ratio Prot	0.01	0.03	0.00		0.02	1000	0.00	0.08		0.00	0.00	Reading of
v/s Ratio Perm	0.03	0.00	0.00	and the second s	0.02	c0.51	0.00	0.00	101 N.V.80	0.00	0.00	100 000
v/c Ratio	0.14	0.10	0.00	Section of the	0.31	0.51	0.03	0.38		0.02	0.00	Service of
Uniform Delay, d1	6.5	6.5	5.9	NUCANDA SIZ	10.7	0.0	7.4	8.4		7.5	7.8	
Progression Factor	1.00	1.00	1.00	1912	1.00	1.00	1.00	1.00		1.00	1.00	100
Incremental Delay, d2	0.2	0.1	0.0	ALL CARDER	1.00	1.2	0.0	0.6	station/ver	0.1	0.0	16 261
Delay (s)	6.7	6.5	5.9	al line in	11.9	1.2	7.5	9.1	- Contraction	7.7	7.8	
Level of Service	A	A	A	RINSS & L	B	A	A	A	18 Park	A	A	1000
Approach Delay (s)	- Station	6.6	210.59	Made	1.7		Date of the	9.0	2		7.7	SPATE A
Approach LOS		A		provide a series of the	A	WALDROUTA	ALC: NR.	A	Len Lenka		A	10-11-00
Intersection Summary		Ev m		Sent 1	- 18 A		105	10.5 S	N 18 8	tu Zhija A		
HCM 2000 Control Delay			3.4	H	CM 2000	Level of	Service		A			
HCM 2000 Volume to Capa	acity ratio		1.43			THE SE			130	WE MAD		Ser N
Actuated Cycle Length (s)		ALL CARACTER	24.7	Si	um of lost	time (s)	ALC: NOT THE OWNER OF THE OWNER OWNER OF THE OWNER OWNE		16.0	Contraction of the	Contraction of the	ALC: NO
Intersection Capacity Utiliz	ation		29.9%		U Level o			Part and	A	ayye=777 B		ALC: NO
Analysis Period (min)	and the standard	- and the second	15				a a second a second				La and and	And a state of the
c Critical Lane Group	e in white		Kanton S	a statistica		10,000	Not the P	to a side is		0.561-0	A WAYNER	1000

N:\Trans\Proposals\2018 FY Proposals\TIA's\Tract A-19-a Huitt Zollars\2018 Study\Analysis\Synchro\bam.syn EJW/BHI

warrant analysis.xls <40mph Sherwood Bld



Г Г

1

[]

Scenario:	Build Peak H	k Hour Delay	0.4	0.4 Hours in AM	Criteria - 4 Hours				
ntersection:	SR 4 and Sherwood/Entrance	nce	1.5	Hours in PM					
e:	1 Lane/1 Lane		Mino	Minor Street Approach Volume	pach Volume	Major	Street A	pproach Volume	Satisfies
Major Street (Orientation): SR 4 (E/W)	Major Street (Orientation): SR 4 (E/W)	Time	NB	ß	High Vol Approach	EB	WB	EB + WB	Warrant 11?
or Street (Orientation):	Sherwood/Entrance (N/S)	AM Peak	96	27	96	98	738	836	NO
		PM Peak	160	68	160	774	290	1,064	N

HCM 6th Signalized Intersection Summary 2: Sherwood/Entrance & SR 4

D

Ô

ſ

n

ľ

ſ

1

ľ

White Rock Master Plan Tract A-19 Build AM

	≯	-	\mathbf{i}	1	+	*	1	†	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٢	1	7	٦	1	1	٦	f,		٢	12	
Traffic Volume (veh/h)	3	83	12	41	686	11	38	1	57	23	0	L
Future Volume (veh/h)	3	83	12	41	686	11	38	1	57	23	0	4
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/In	1870	1870	1870	1870	1870	1870	1870	1870	1870	1900	1900	1900
Adj Flow Rate, veh/h	3	90	13	45	746	12	41	1	62	25	0	4
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	0	0	0
Cap, veh/h	173	766	701	670	825	735	543	7	425	487	0	421
Arrive On Green	0.00	0.41	0.41	0.03	0.44	0.44	0.03	0.27	0.27	0.02	0.00	0.26
Sat Flow, veh/h	1781	1870	1585	1781	1870	1585	1781	25	1564	1810	0	1610
Grp Volume(v), veh/h	3	90	13	45	746	12	41	0	63	25	0	4
Grp Sat Flow(s),veh/h/ln	1781	1870	1585	1781	1870	1585	1781	0	1589	1810	0	1610
Q Serve(g_s), s	0.1	1.8	0.3	0.9	22.7	0.3	1.0	0.0	1.8	0.6	0.0	0.1
Cycle Q Clear(g_c), s	0.1	1.8	0.3	0.9	22.7	0.3	1.0	0.0	1.8	0.6	0.0	0.1
Prop In Lane	1.00		1.00	1.00		1.00	1.00	A12,5	0.98	1.00		1.00
Lane Grp Cap(c), veh/h	173	766	701	670	825	735	543	0	431	487	0	421
V/C Ratio(X)	0.02	0.12	0.02	0.07	0.90	0.02	0.08	0.00	0.15	0.05	0.00	0.01
Avail Cap(c_a), veh/h	284	917	829	724	917	813	601	0	431	564	0	421
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(1)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	14.1	11.2	9.6	9.7	15.9	8.9	15.6	0.0	16.9	15.9	0.0	16.7
Incr Delay (d2), s/veh	0.0	0.1	0.0	0.0	11.5	0.0	0.1	0.0	0.7	0.0	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	0.0	0.7	0.1	0.3	10.6	0.1	0.4	0.0	0.7	0.2	0.0	0.0
Unsig. Movement Delay, s/veh						and sold	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Wee a cost of a			010	0.0
LnGrp Delay(d),s/veh	14.1	11.3	9.6	9.8	27.4	8.9	15.7	0.0	17.6	16.0	0.0	16.8
LnGrp LOS	В	В	A	A	С	A	В	A	В	В	A	B
Approach Vol, veh/h		106	ay 1.81(2)	1911	803	PAR DE	0.11	104	a series	STORE TO STORE	29	Tel Standard
Approach Delay, s/veh	002N=112/0	11.2			26.1	19/2017/31 (S	MAR 297. V	16.9	1.1.56	20,000,000	16.1	DINRES.
Approach LOS		B	Par an	11. July 1	C		Server State	B	in control	San. No	B	antor al
and the second se		-					anna 28 - 29		Sterestoen.	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		
Himer - Assigned Phs	5.4	20.6	61	20.1	5	20.0	1	8				
Phs Duration (G+Y+Rc), s	5.4	20.6	6.1	29.1	6.0	20.0	4.2	31.0	V deser		Serie 5	80 E
Change Period (Y+Rc), s	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	Conceptor An		600 (R. 1)	2422200
Max Green Setting (Gmax), s	4.0	16.0	4.0	30.0	4.0	16.0	4.0	30.0	THE REPART		and shall -	al a car
Max Q Clear Time (g_c+l1), s	2.6	3.8	2.9	3.8	3.0	2.1	2.1	24.7		2004 - 11-20	1200	the second
Green Ext Time (p_c), s	0.0	0.2	0.0	0.4	0.0	0.0	0.0	2.3		W Suit P	8.049.9	SW St
Intersection Summary		New York					1210 2.V.	Since	s p.e. 4.		EX.23	Sugar -
HCM 6th Ctrl Delay	12, 25%	WOLNES!	23.4	12.0	1			1.	1-15-14	1913		
HCM 6th LOS			С									

N:\Trans\Proposals\2018 FY Proposals\TIA's\Tract A-19-a Huitt Zollars\2018 Study\Analysis\Synchro\bam imp.syn Synchro 7 - Report EJW/BHI Page 1

HCM 6th Signalized Intersection Summary 1: Rover & SR 4

1

ľ

ſ

T.

11

ľ

ſ

[]-

[].

Ľ

Ľ

•

	٠	-	\mathbf{r}	•	-	A.	1	Ť	1	1	ŧ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۳i	1	7	٦	¢Î	5.00	ሻ	₽			4	
Traffic Volume (veh/h)	6	479	251	312	202	34	69	27	187	65	28	3
Future Volume (veh/h)	6	479	251	312	202	34	69	27	187	65	28	3
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	7	521	273	339	220	37	75	29	203	71	30	3
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	550	648	632	488	771	130	479	51	358	221	60	5
Arrive On Green	0.01	0.35	0.35	0.15	0.49	0.49	0.05	0.25	0.25	0.12	0.12	0.12
Sat Flow, veh/h	1781	1870	1585	1781	1561	262	1781	202	1414	812	502	39
Grp Volume(v), veh/h	7	521	273	339	0	257	75	0	232	104	0	0
Grp Sat Flow(s),veh/h/ln	1781	1870	1585	1781	0	1823	1781	0	1616	1353	0	0
Q Serve(g_s), s	0.1	12.3	6.1	5.3	0.0	4.1	1.7	0.0	6.1	3.0	0.0	0.0
Cycle Q Clear(g_c), s	0.1	12.3	6.1	5.3	0.0	4.1	1.7	0.0	6.1	3.5	0.0	0.0
Prop In Lane	1.00		1.00	1.00		0.14	1.00		0.88	0.68	100000000000000000000000000000000000000	0.03
Lane Grp Cap(c), veh/h	550	648	632	488	0	901	479	0	409	285	0	0
V/C Ratio(X)	0.01	0.80	0.43	0.70	0.00	0.29	0.16	0.00	0.57	0.37	0.00	0.00
Avail Cap(c_a), veh/h	682	842	796	612	0	1081	532	0	826	583	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	10.2	14.5	10.7	9.6	0.0	7.3	15.8	0.0	15.9	20.4	0.0	0.0
Incr Delay (d2), s/veh	0.0	4.4	0.5	2.5	0.0	0.2	0.2	0.0	1.2	0.8	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	0.0	5.0	1.7	1.6	0.0	1.2	0.6	0.0	2.2	1.1	0.0	0.0
Unsig. Movement Delay, s/veh						1		0.10	S7/ 10000(12)		0.0	0.0
LnGrp Delay(d),s/veh	10.3	18.8	11.1	12.0	0.0	7.5	16.0	0.0	17.2	21.2	0.0	0.0
LnGrp LOS	В	В	В	B	A	A	B	A	B	C	A	A
Approach Vol, veh/h	126.7 2	801	2.23.2	Sec.	596	1.5		307			104	SVS-III
Approach Delay, s/veh		16.1	A CONTRACTOR		10.1	ACTACIAN IA		16.9	CALCE HAVE	a free to the state	21.2	SIMUS
Approach LOS	1.3033.0	B	315132440	THE STATE	B	1.00	1. ¹ . 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	B		ediled mi	C	1019130
	STELOI N					a solary a			Marking and	NUEWISICSIN		STUDIO
Timer - Assigned Phs		40.4	3	4	5	6	1	8	NUES IN		1. Ninesi	
Phs Duration (G+Y+Rc), s		16.4	11.6	20.9	6.6	9.8	4.4	28.2			197 - 90	
Change Period (Y+Rc), s	1 50 A 2	4.0	4.0	4.0	4.0	4.0	4.0	4.0	NO SALA	MS Dates of	110004004	100000000
Max Green Setting (Gmax), s	a sala a	25.0	11.0	22.0	4.0	17.0	4.0	29.0			Star Star	12
Max Q Clear Time (g_c+l1), s	Contraction of	8.1	7.3	14.3	3.7	5.5	2.1	6.1		-	all and and an	and the second se
Green Ext Time (p_c), s		1.3	0.4	2.6	0.0	0.4	0.0	1.4		incostre.	i las itali	Real Property in
Intersection Summary	100 10 1	Time.		1-0.3W/A			a she	2 . S. C. M. C.				
HCM 6th Ctrl Delay	a fer "	1970 . 1881	14.6	n Suindai		Caller Source	augus		Seland.			CSU.
HCM 6th LOS			В									

N:\Trans\Proposals\2018 FY Proposals\TIA's\Tract A-19-a Huitt Zollars\2018 Study\Analysis\Synchro\bpm.syn EJW/BHI

HCM Signalized Intersection Capacity Analysis 4: Grand Canyon/Pajarito & SR 4

[]

Π

Π

Π

E

White Rock Master Plan Tract A-19 Build PM

	٨	-+	7	4	+	×.	1	1	1	4	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	1	1	٦	1	T	٦	4		ň	P	
Traffic Volume (vph)	3	115	8	14	65	52	10	3	11	698	99	27
Future Volume (vph)	3	115	8	14	65	52	10	3	11	698	99	27
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	Carling M.
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.88		1.00	0.97	
Fit Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	P. HELS	0.95	1.00	M6.81
Satd. Flow (prot)	1770	1863	1583	1770	1863	1583	1770	1639		1770	1804	(a second
Flt Permitted	0.71	1.00	1.00	0.68	1.00	1.00	1.00	1.00	6 10 10 1	0.82	1.00	AVE UD
Satd. Flow (perm)	1324	1863	1583	1261	1863	1583	1863	1639		1521	1804	No. of Concession, Name
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	3	125	9	15	71	57	11	3	12	759	108	29
RTOR Reduction (vph)	0	0	8	0	0	0	0	12	0	0	12	0
Lane Group Flow (vph)	3	125	1	15	71	57	11	3	0	759	125	0
Turn Type	pm+pt	NA	pm+ov	pm+pt	NA	Free	pm+pt	NA		pm+pt	NA	1955
Protected Phases	7	4	5	3	8		5	2			6	Contraction of
Permitted Phases	4	1. C.L.	4	8	5.225	Free	2	1000 A	e a stali	6	1. Sugar Line	AL SAL
Actuated Green, G (s)	6.8	6.3	6.8	6.8	6.3	45.3	1.4	0.9		26.5	22.0	Parameter System
Effective Green, g (s)	6.8	6.3	6.8	6.8	6.3	45.3	1.4	0.9		26.5	22.0	STATES
Actuated g/C Ratio	0.15	0.14	0.15	0.15	0.14	1.00	0.03	0.02		0.58	0.49	
Clearance Time (s)	4.0	4.0	4.0	4.0	4.0	112.00	4.0	4.0	NO CULSE	4.0	4.0	STR.
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	1000
Lane Grp Cap (vph)	203	259	377	194	259	1583	56	32	in street -	1008	876	1.312
v/s Ratio Prot	0.00	c0.07	0.00	0.00	0.04	for the set	0.00	0.00	and the second second	c0.36	0.07	1000
v/s Ratio Perm	0.00	33,743	0.00	0.01		c0.04	0.00	We Brown	127 121	c0.08	STALL BOOM	SH221
v/c Ratio	0.01	0.48	0.00	0.08	0.27	0.04	0.20	0.10		0.75	0.14	
Uniform Delay, d1	16.4	18.0	16.4	16.5	17.5	0.0	18.9	21.8	CHANGE H	6.8	6.4	12.31
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	and the second second
Incremental Delay, d2	0.0	1.4	0.0	0.2	0.6	0.0	1.7	1.4	12.578	3.2	0.1	19.00
Delay (s)	16.4	19.4	16.4	16.7	18.0	0.0	20.6	23.2		10.1	6.5	Transferra
Level of Service	В	В	В	Be	В	А	С	С		В	Α	
Approach Delay (s)		19.1			10.7			22.1			9.5	
Approach LOS	Restaure -	В	100	2389.18°	В	NI SU.		С		and the second	A	have,
Intersection Summary		S. Carlos	44 5. s.								e name	4083
HCM 2000 Control Delay	Server line	-stent	11.0	H	CM 2000	Level of	Service	CARD AND	В		1-2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	
HCM 2000 Volume to Capa	acity ratio		0.78	104								
Actuated Cycle Length (s)	1201082	371-12-20	45.3	S	um of lost	time (s)		AND THE	16.0	1	ALS MA	A. Carl
Intersection Capacity Utiliz	ation		59.4%		U Level		3		В	(****)(***)	Pitte Vite	NAMES OF GROOM
Analysis Period (min)	Patentes -	to the set of	15	TP SA	120.00		CDDA TO	S. 100 - 1995	GIGLAN RA			3133
c Critical Lane Group			And the Real Property lies	ALL & BUILDING		< e. s	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	an Uppeletas	THE PARTY			10000

c Critical Lane Group

HCM 6th Signalized Intersection Summary 2: Sherwood/Entrance & SR 4

T.

Π

f

White Rock Master Plan Tract A-19 Build PM

	۶	-	$\mathbf{\hat{z}}$	1	+	×	1	1	1	1	Ļ	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	1	7	ň	1	ř	٦	12		٢	1>	
Traffic Volume (veh/h)	26	631	117	134	111	45	18	13	129	41	18	30
Future Volume (veh/h)	26	631	117	134	111	45	18	. 13	129	41	18	30
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	(
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00	and a state	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	28	686	127	146	121	49	20	14	140	45	20	33
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	652	768	680	267	837	764	466	36	361	378	167	275
Arrive On Green	0.02	0.41	0.41	0.06	0.45	0.45	0.02	0.25	0.25	0.03	0.26	0.26
Sat Flow, veh/h	1781	1870	1585	1781	1870	1585	1781	146	1461	1781	635	1047
Grp Volume(v), veh/h	28	686	127	146	121	49	20	0	154	45	0	53
Grp Sat Flow(s), veh/h/ln	1781	1870	1585	1781	1870	1585	1781	0	1607	1781	0	1682
Q Serve(g_s), s	0.6	22.1	3.2	3.0	2.5	1.1	0.5	0.0	5.2	1.2	0.0	1.6
Cycle Q Clear(g_c), s	0.6	22.1	3.2	3.0	2.5	1.1	0.5	0.0	5.2	1.2	0.0	1.6
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.91	1.00	0.0	0.62
Lane Grp Cap(c), veh/h	652	768	680	267	837	764	466	0	397	378	0	441
V/C Ratio(X)	0.04	0.89	0.19	0.55	0.14	0.06	0.04	0.00	0.39	0.12	0.00	0.12
Avail Cap(c_a), veh/h	719	865	763	267	865	788	543	0	397	427	0	441
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	10.5	17.8	11.5	14.5	10.6	9.0	17.7	0.0	20.3	17.4	0.0	18.2
Incr Delay (d2), s/veh	0.0	10.8	0.1	2.3	0.1	0.0	0.0	0.0	2.9	0.1	0.0	0.6
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	0.2	10.4	1.0	1.2	0.9	0.3	0.2	0.0	2.2	0.5	0.0	0.6
Unsig. Movement Delay, s/veh				1000	0.0	010		0.0	£.£	0.0	0.0	0.0
LnGrp Delay(d),s/veh	10.5	28.6	11.6	16.8	10.6	9.0	17.7	0.0	23.2	17.5	0.0	18.8
LnGrp LOS	В	C	В	В	B	A	В	A	C	B	A	B
Approach Vol, veh/h	2,180,00	841	28 1 1 8 M	MCCOLDS	316	Storal	215 51	174		T Saute Sa	98	
Approach Delay, s/veh		25.5	CALCOSTING.	MAT 201/04	13.3	120 C 197	N HI WARAN	22.6	NIVE AND A	1 8 98 17	18.2	SY COL
Approach LOS	Weburg	20.0 C	STORE STORE	e intern	B		ashin 73	22.0 C	10000	15 2 102	B	112010
			0									Carepool (
Timer - Assigned Phs	6.2	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	6.2	20.0	8.0	30.6	5.2	21.0	5.6	33.0				18/2
Change Period (Y+Rc), s	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0				201000207
Max Green Setting (Gmax), s	4.0	16.0	4.0	30.0	4.0	16.0	4.0	30.0			14033	18 2 M
Max Q Clear Time (g_c+l1), s	3.2	7.2	5.0	24.1	2.5	3.6	2.6	4.5			IN LOUGH STOR	11111-101
Green Ext Time (p_c), s	0.0	0.5	0.0	2.5	0.0	0.1	0.0	0.7	15 18 12 A	n sentes		Nex 1
Intersection Summary	Crief Star	en be	04.0		S IN SIG		130241	1.00	MESIRY.			
HCM 6th Ctrl Delay		We M I	21.9				100		SAUL S	1. 1. 1. 1. 1.	Service Live	ANTE:
HCM 6th LOS			С									

N:\Trans\Proposals\2018 FY Proposals\TIA's\Tract A-19-a Huitt Zollars\2018 Study\Analysis\Synchro\bpm imp.syn Synchro 7 - Report EJW/BHI Page 1

Intersection Int Delay, s/veh

F

[[

Π

П

1

U.

Int Delay, s/veh	2.5												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	3	1	1	5	1	1	٦	f,		ሻ	4		
Traffic Vol, veh/h	3	83	12	41	686	11	38	1	57	23	0	4	AND REPORT AND A DECK
Future Vol, veh/h	3	83	12	41	686	11	38	1	57	23	0	4	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	- N		None	-	10.4	None	1	1002	None	0.6	Altri-	None	Reading the second second
Storage Length	250		150	250		150	150	8	-	150	-	-	
Veh in Median Storage,	# -	0		1	0	and the	1	0	100	PART	0	Statt -	States of the second second
Grade, %	-	0		12	0	44 <u>6</u>		0	-		0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	A REAL PROPERTY AND
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	0	0	0	
Mvmt Flow	3	90	13	45	746	12	41	1	62	25	0	4	

Major/Minor	Major1		Ň	lajor2	4.50	U br	Minor1	all.	1.2. A	Minor2	11.3/1	10 a	
Conflicting Flow All	758	0	0	103	0	0	940	944	90	970	945	746	
Stage 1	111111					. 44	96	96	nalis (Br	836	836	alwing.	Contraction (1998) Surge
Stage 2	14	1	4		2	-	844	848	-	134	109		
Critical Hdwy	4.12		10	4.12	Territory	-	7.12	6.52	6.22	7.1	6.5	6.2	Conversion and
Critical Hdwy Stg 1		5 2 0	2	141	-		6.12	5.52	-	6.1	5.5	-	
Critical Hdwy Stg 2		102-12-01	-	100			6.12	5.52	1	6.1	5.5	Churter?	and the second second second
Follow-up Hdwy	2.218	187	2	2.218	-	-	3.518	4.018	3.318	3.5	4	3.3	
Pot Cap-1 Maneuver	853	1 A	9. 10	1489			244	262	968	235	264	417	
Stage 1	17 - 2	5 2 11			-		911	815	-	364	385	-	
Stage 2		81 -	-				358	378	-	874	809	-1	and the second second
Platoon blocked, %		-	-		-	-			0				
Mov Cap-1 Maneuver	853	N. Contraction		1489		2	235	253	968	214	255	417	Lief to the state of the
Mov Cap-2 Maneuver	19 4 5	4	1		5	-	235	253		214	255	-	
Stage 1	10	110	12.5	1010	1000	1.5	907	812		363	373	N75 - 1	
Stage 2		÷		-			344	367	-	814	806	-	

Approach	EB		WB	6.25		NB			SB	2. V.I	
HCM Control Delay, s	0.3	1.19	0.4	ns th	T says	14.9	S. AN		22.5		
HCM LOS						В		and the second second	С		
AND A CONTRACTOR	-1215		No. and		1.23	SER.	1300	CANNA S	1949		Contraction of the second
Minor Lane/Major Mvmt	NBLn	1 NBLn2	EBL	EBT	EBR	WBL	WBT	WBR	BLn1	SBLn2	Contraction and a second
Capacity (veh/h)	23	5 923	853	N. 8 4	Part &	1489		12.00	214	417	
HCM Lane V/C Ratio	0.17	6 0.068	0.004	2	1	0.03		-	0.117	0.01	
HCM Control Delay (s)	23.	6 9.2	9.2	1.10.2	Nº14	7.5			24	13.7	and such as we see the working
HCM Lane LOS	(C A	Α	-	1	А		-	С	В	
HCM 95th %tile Q(veh)	0.	6 0.2	0		6 0 3	01	10 1 mar	101020	04	0	Service of Programmer States and States

N:\Trans\Proposals\2018 FY Proposals\TIA's\Tract A-19-a Huitt Zollars\2018 Study\Analysis\Synchro\bam.syn EJW/BHI 1

ſ

Г

ſſ.

ſſ

Γ.

1

Intersection			lov:stra	12010	CHAN:	-	201 2	and the second second	1 3 T	725 110	CALC:	(Constants)	
Int Delay, s/veh	1.4												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	7	1	1	۲	朴			4	1		4	l	
Traffic Vol, veh/h	17	68	0	0	724	5	6	0	17	13	0	49	WAR STREET ALL A
Future Vol, veh/h	17	68	0	0	724	5	6	0	17	13	0	49	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	Market Barris Charles
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	SIME	100	None	NET C	21.4	None	1200		None	2.315	SWIE.	None	
Storage Length	250	-	150	250	-	-	-	-	-	-	-	-	
Veh in Median Storage	e, # -	0		22.77	0	Smill?	2 B	0	-		0	12.81-8	RUM STATE STATES
Grade, %	-	Ó	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	CANNER A MELLER CAL
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	18	74	0	0	787	5	7	0	18	14	0	53	
Major/Minor	Major1			Major2	and the second	L	Ainor1	SSR.	S We -	Minor2	1		
Conflicting Flow All	792	0	0	74	0	0	504	902	74	909	900	396	
Stage 1	12.4123	-	1		1.34	1.	110	110	100	790	790		N TANK WILL MADE IN
Stage 2	5	-		1. 	.7		394	792		119	110		
Critical Hdwy	4.13			4.13	-	THE REAL	7.33	6.53	6.23	7.33	6.53	6.93	
Critical Hdwy Stg 1	-		-		-		6.13	5.53		6.53	5.53		
Critical Hdwy Stg 2	NISSI-		11 4	117-		A STAR	6.53	5.53	(Nygla	6.13	5.53	1511/14	MARCH SHOPPING
Follow-up Hdwy	2.219		-	2.219		-	3.519	4.019	3.319	3.519	4.019	3.319	
Pot Cap-1 Maneuver	827		3.181	1525	10.25	88.83 1 .	464	277	987	243	277	604	the second a second second
Stage 1	.		-	1.00			895	804	-	350	401	-	Sector and the sector sector sector
Stage 2	1			26.3		19432	603	400	1.1	885	804	STATE!	States and the
Platoon blocked, %			-			(• :		10,000		C. C. C. C.		and the set is a	
Mov Cap-1 Maneuver	827		-	1525	100	198643	416	271	987	234	271	604	State of the state of the state

Olugoz							000	400		000	UUT	When a residence in the state showing the
Platoon blocked, %												
Mov Cap-1 Maneuver	827	-	-	1525	M. S.M		416	271	987	234	271	604
Mov Cap-2 Maneuver		:**:	æ	(*)			416	271	-	234	271	-
Stage 1	n () - 2	3/2-578	5. e.)		St. Casel	1	875	786	19.2 C	342	401	
Stage 2	-	5 (8 - 9	-		550	400	-	850	786	
A STATE OF A				AND INCOME.		1000			102 W 100 D	The Assessment	10000000	THE REPORT OF THE PARTY OF THE

Approach	EB		WB		8- G	NB	80.21		SB.	
HCM Control Delay, s	1.9	32.5	0	3.0		10.1	1	5.35W	14.3	
HCM LOS						В			В	
Sec. Sec. and it	1012 C		a Cuis				1998	and of	an din	
Minor Lane/Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1		
Capacity (veh/h)	727	827	-		1525	134	1201-	454	10.3	Contraction of the second states of the second states
HCM Lane V/C Ratio	0.034	0.022		-	-		-	0.148		
HCM Control Delay (s)	10.1	9.5	Suus.		0	-		14.3	8 C 20	
HCM Lane LOS	В	A			А	-		В		
HCM 95th %tile Q(veh)	0.1	0.1	-	1	0	1414	S UNU	0.5		

N:\Trans\Proposals\2018 FY Proposals\TIA's\Tract A-19-a Huitt Zollars\2018 Study\Analysis\Synchro\bam.syn EJW/BHI

H

Г

¢--

F

II-

Ĺ

1

Int Delay, s/veh	8.2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
ane Configurations	Y		7	۲. J	1	7	٦ ٦	1»	INDIA) T		OUN
Traffic Vol, veh/h	26	631	117	134	111	45	18	13	129	41		30
Future Vol, veh/h	26	631	117	134	111	45	18	13	129	41	18	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	41		0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop		Stop
RT Channelized	TICC	-		1100	-	None	Otop -	Stop -	None	Stop	Stop -	None
Storage Length	250	-	150	250	roan trees	150	150		None	150	N PROPERTY	NONC
Veh in Median Storage		0	100	200	0	-	-	0	0207-	100	0	- 8.7/4/10
Grade, %	η π -	0	-		0	- aliana	-	0	-		0	323.4
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92		
Heavy Vehicles, %	2	2	2	2	2	2	2	2	92	92		
Mymt Flow	28	686	127	146	121	49	20	14	140	45	20	33
INTALLICT 10 MA	20	000	121	140	121	43	20	14	140	40	20	33
Major/Minor	Major1		the second	Major2	1944		Minor1	1	-	Minor2		the set
Conflicting Flow All	170	0	0	813	0	0	1206	1204	686	1296	1282	121
Stage 1	-	-	U	013	U	0	742	742	- 000	413	413	and the lot of the lot
Stage 2		1960, 2004	(HOULE)	DEPART	1.9 . I - II.	10000.0 0 0	464	462	10000	413 883	869	2 . VIY -
Critical Hdwy	4.12	0.20	niw le	4.12	THE OWNER	1201010	7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1	4.12			4.12			6.12	6.92 5.52	A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR A CONTRAC	6.12		
	-	Lankir.	OKAN Later		-	-	and the local distance of the	5.52	···		5.52	-
Critical Hdwy Stg 2	- 2.218		20 AU - 50	2.218	No. POR	Cold Harris			2 240	6.12	5.52	2.040
Pot Cap-1 Maneuver	1407	-	Concerts.	814		-	3.518		3.318		4.018	3.318
	1407	140 C 14		014	CIN498	2.4	160	184	447	139	165	930
Stage 1	WE SHOW	-	ANN AND AND AND AND AND AND AND AND AND	-	151100	2.000	408	422	-	616	594	in a la company
Stage 2			100	10 L-1-2	1	S Sugar	578	565		340	369	1
Platoon blocked, %	4407	-	-	044			447	440	117	75	400	000
Mov Cap-1 Maneuver	1407		4-15	814	14,121	Notes of	117	148	447	75	133	930
Mov Cap-2 Maneuver	-	-	-	-	-	-	117	148		75	133	-
Stage 1	<u>्रि)</u>	(10)A 191	2 P.			1	400	414	-	604	488	
Stage 2	-	087873	-	21-024	-	eleta	439	464	inter a	221	362	-
Amuranah	ED	1412 1250	CININA CININA	16/D	CHY 23		AUD	ALC: NO		00	SVENCO	na ren h
Approach HCM Control Delay, s	EB 0.3		COLUMNES	WB 4.8			NB 23.3		New Ist	SB 60.4		
HCM LOS	0.5	and the second	1511-14	4.0	Nati St	1.1.1		10.000	A VIC	117 P-0KH 5004	100	100
HOM LOS	587052	22163		VG. Igel	2	1	С	18.198	Sec.	F	N.C.	neron
Minor Lane/Major Mvm	t i	NBLn11	NBI n2	EBL	EBT	EBR	WBL	WBT	MRD	SBLn1	SBL n2	
Capacity (veh/h)	0.000	117	377	1407		LUIN	814	VVU1	1100 2010	75	_	
HCM Lane V/C Ratio		0.167		0.02	Chief and the				Statistes	0.594	286	
the second se	Log Cos				*		0.179	WSW/				1230WW
HCM Control Delay (s)	sa guo	41.8	21	7.6	100.81		10.4	2027		107.2	20.4	10
HCM Lane LOS HCM 95th %tile Q(veh)	20	E 0.6	C 1.9	A 0.1	-	-	B 0.6	-		F 2.6	C 0.7	I CONTRA
PALINE MOTO VATURE E MARCH	ALC: NOT THE OWNER OF TAXABLE	un	I W		100 I I I I I I I I I I I I I I I I I I		Ub	COLUMN 1	1000	Zn	11/	

N:\Trans\Proposals\2018 FY Proposals\TIA's\Tract A-19-a Huitt Zollars\2018 Study\Analysis\Synchro\bpm.syn EJW/BHI

HCM 6th TWSC 3: La Vista & SR 4

ſ

ľ

ľ

Г

ſſ

Ľ

Intersection	the state	Yester.	and the	1.51 2	1	ARC .				12		
Int Delay, s/veh	1.8	× 11 12 X						1107,71940				/
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	1	1	۲	1			4			4	a contraction of the
Traffic Vol, veh/h	56		14	45	94	15	4		17	9	0	32
Future Vol, veh/h	56	749	14	45	94	15	4	0		9	0	
Conflicting Peds, #/hr	0		0	0	0	0		0		0	0	
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	
RT Channelized	Castle.	10EA 3	and the second second	Saraha.	1115	None	40.0	o top	None	100 P	N.S. S.L	A REAL PROPERTY.
Storage Length	250	-	150	250	-	-	•	-	-	-		-
Veh in Median Storage	e,# -	0	-	1000	0	-	1	0	1. S. 1. S. 1.		0	-12-44
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	61	814	15	49	102	16	4	0	18	10	0	35
										- 10 10 F 2 F		
Major/Minor	Major1	A		Major2			Minor1			Minor2	1821	n ze.
Conflicting Flow All	118	0	0	829	0	0	1085	1152	814	1161	1159	59
Stage 1	1999. A	1 Sta	142 33	1000	AlM-	iten-	936	936	8.162 ¥	208	208	5-8 / 1-
Stage 2					π.	-	149	216	-	953	951	-
Critical Hdwy	4.13		al series	4.13	(Sing)		7.33	6.53	6.23	7.33	6.53	6.93
Critical Hdwy Stg 1		-			-		6.13	5.53		6.53	5.53	
Critical Hdwy Stg 2	1 Same	115		172043	5 Y 5		6.53	5.53	1.	6.13	5.53	100
Follow-up Hdwy	2.219	-		2.219		-	3.519	4.019	3.319	3.519	4.019	3.319
Pot Cap-1 Maneuver	1469	-	1	800			182	197	377	161	195	995
Stage 1	-	-		: - 2	-		317	343	-	775	729	-
Stage 2		2.112	alle.	S. Mary			839	723		310	337	100.44
Platoon blocked, %		-										
Mov Cap-1 Maneuver	1469	-	3.0	800		1.542	162	177	377	141	176	995
Mov Cap-2 Maneuver			2 . (M	:#0	-	-	162	177	-	141	176	
Stage 1		1	No.		-		304	329	8. 4	742	685	
Stage 2	-						760	679	-	283	323	<u>.</u>
	663	18.3		o, jo Win	1 Miles				5,0,0			5.75
Approach	EB			WB			NB	CE DA	1. 16-24	SB		
HCM Control Delay, s	0.5			2.9	1073 30	COLUMN .	17.9		S.M.	14.4		
HCM LOS			Dear Street	SUILING			С			В		
e de la contrata de la	-Not Hills	e salah	107926	an sanah	Ser.		14 (P)	See. 1	in the local	S		
Minor Lane/Major Mvn	nt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR			1.8.7	1.21
Capacity (veh/h)	i da		1469	din iza		800	fi a e	1	427	25.24	1	
HCM Lane V/C Ratio			0.041	172		0.061	-		0.104	and is		
HCM Control Delay (s)		17.9	7.6	10.00		9.8	1. 1.		10000	(Hard	8 N. 1	1.10
HCM Lane LOS		С	A			Α			В			mania i
HCM 95th %tile Q(veh)	0.2	0.1		1.0	0.2	31 (J =		0.3			

N:\Trans\Proposals\2018 FY Proposals\TIA's\Tract A-19-a Huitt Zollars\2018 Study\Analysis\Synchro\bpm.syn EJW/BHI

Los Alamos County

Community Development Department

PLANNING & ZONING COMMISSION STAFF REPORT

Public Hearing Date:	March 28, 2018
Subject:	Case No. SUB-2018-005, A-19/Mirador Final Subdivision Plat
Applicant/Owner:	Scott Eddings, P.E., Agent for Adam Thornton, Owner
Case Manager:	Tamara Baer, Planning Manager

Case No. SUB-2018-005: A-19/Mirador Final Subdivision Plat

Scott Eddings, P.E., agent for Adam Thornton, owner, requests Final Subdivision Plat approval to create 161 new residential lots and one commercial lot on Tracts A-19-A-1, A-19-A-2A and A-19-A-2B, being a part of the Ramon Vigil Grant. The land from which the new subdivision will be platted consists of three existing parcels. The parcel designated A-19-A-1, is zoned R-1-5 (Single-family residential) and consists of 34.35⁺ acres. The second parcel is A-19-A-2A, is zoned DT-NCO (Downtown - Neighborhood Center Overlay), and consists of 12.94⁺ acres. A third parcel, A-19-A-2B is also zoned DT-NCO, consists of 12.97⁺, and is owned by Los Alamos County. The subdivision will be located on the first two, privately owned tracts of land.

Motion on the Final Subdivision Plat

Motion Option 1:

I move to **approve** Case No. SUB-2018-005, a request for approval of Final Subdivision Plat, creating 161 new residential lots and one commercial lot pertaining to the Property as described, and known as A-19, or Mirador. I so move for the reasons stated in the staff report and per testimony at the public hearing, and subject to the conditions of approval.

Conditions of Approval:

- 1. The developer shall be responsible for future installation of a traffic signal and related equipment at the NM 4/Mirador/Sherwood Boulevard intersection if engineering warrants are met.
- 2. The developer shall provide an updated Traffic Impact Analysis (TIA) at the time of any of the following:
 - Site Plan submittal for Commercial Tract D, or any portion thereof; or
 - As required by the County Engineer based on traffic operational performance, safety and/or capacity issues during or upon completion of residential build-out; or
 - As may be required by the New Mexico Department of Transportation. (See County Engineer's memorandum Exhibit B.)

- Applicant's engineer shall address all County Engineer's Conditions of Approval of Preliminary Plat (Exhibit A), and additional comments in the County Engineer's memorandum dated February 28, 2018 (Exhibit B) with submittal of construction drawings for Building Permit.
- 4. Per LAC Code of Ordinances, Sec. 16-236 (b) (1): An escrow letter of credit agreement approved by the county attorney shall be provided in an amount sufficient to pay 100 percent of the costs of construction of all public improvements and public utilities. The utilities manager and county engineer shall certify that the amount is adequate.
- 5. Per LAC Code of Ordinances, Sec. 16-236, prior to recording the plat, provide a written statement describing the date for commencement and completion of construction, by phase, and a chart indicating the approximate construction period for each of the utilities, and public and private roadway improvements.

6. ...

Motion Option 2:

I move to **deny** Case Nos. SUB-2018-005, a Final Subdivision Plat for 161 new residential lots, and one commercial lot, pertaining to the Property as described, and known as A-19, or Mirador, finding that the proposal has failed to meet the Los Alamos County Code of Ordinances, Chapter 16 – Development Code review criteria in Sec. 16-153 – Subdivision, for the following reason(s):

1. ...

BACKGROUND AND HISTORY

On December 13, 2017 the Planning and Zoning Commission approved three related cases for this property:

- **Case No. WVR-2017-0051**, a request for approval of a **Waiver** to the 50-foot frontage requirement for nine lots within the proposed subdivision of Lot A-19-A-1; and
- Case No. SIT-2017-0024, a request for Site Plan approval to develop 160 residential lots; and
- **Case No. SUB-2017-0004**, a request for approval of a **Preliminary Subdivision Plat**, creating 160 new residential lots and one commercial lot pertaining to the Property as described, and known as A-19.

The Waiver and Site Plan approvals were final actions. The Preliminary Plat application included 20 conditions of approval, which are attached to this report as Exhibit A. Most of these conditions have been satisfied. Others either pertain to an action that is required at some later date or are technical comments and corrections that need to be addressed prior to or upon application and submittal of construction plans for building permit. All reviewers, including Utilities, Engineering, Fire and Planning support approval of the Final Subdivision Plat. (See also IDRC section below.)

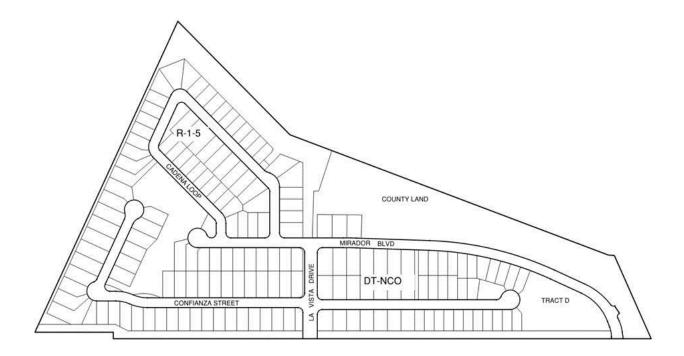
The recommended conditions of approval in this report, as they pertain to future requirements, are included here for reference and continuity. These include requirements related to traffic impacts at or during build-out, code requirements for financial guarantees, and timing requirements carried over from the Development Agreement.

The current application is for Final Subdivision Plat approval. The Los Alamos County Code of Ordinances, Development Code, Sec. 16- 459. - **Relationship between sketch, preliminary and final plat**, states, in part, "No final plat shall be considered by the planning and zoning commission unless it substantially conforms to the approved or conditionally approved preliminary plat." An extensive review of the Final Plat submittal by County staff finds that the Final Plat does substantially conform to the conditionally approved preliminary plat.

There are two differences of note between the Preliminary and Final Plats. First, one lot has been added, bringing the total number of proposed residential lots from the 160 lots approved with the Preliminary Plat review to 161. County staff, from all reviewing departments, found that the addition of this single lot did not substantially change the nature of the proposal or affect demand on infrastructure. The second change with the current submittal reflects the requirement by the Engineering Division to replace the "knuckle" design at the end of the road that was previously named Sherwood, and is now called Mirador, to a traditional cul-de-sac design.

The following history of the property was provided with the previous applications, and is repeated here for the record.

The original 76.33 acre parcel was transferred by the Federal Government to Los Alamos County in 2002. In June of 2008, the Los Alamos County Council adopted the White Rock Center Master Plan/Economic Development Strategy for the purpose of generating economic development in the White Rock area. The Master Plan adopted a vision for the redevelopment of the central core of White Rock and created a preferred development scenario, which featured both residential and mixed-use development on this site. A brief history of actions pertaining to this property includes the following:


- Property was granted to the County of Los Alamos by the Department of Energy on 24 September, 2002 and zoned F-L.
- 2005, Los Alamos County divided the lot into three lots, A-19-A, A19-B, and A-19-C, with the anticipation of the development of A-19-B and A-19-C for the Los Alamos Visitors Center and Los Alamos Fire Department Station 3. A-19-B and C were rezoned to P-L. The remaining portion, A-19-A, consisted of 60.37<u>+</u> acres.
- In 2012 Design and Development Standards were developed by the County, as property owner, in association with a consultant team, for A-19-A, in anticipation of the development of that tract for housing and mixed-use commercial.
- 2013 Summary Lot Split in anticipation that the western portion of the property, Lot A-19-A-1, consisting of 34.46<u>+</u> acres, would be developed as single-family residential and that the eastern portion, Lot A-19-A-2, consisting of 25.82<u>+</u> acres, would become a mixed-use center.
- 2013 Rezoning. Lot A-19-A-1 was rezoned to R-1-5 (Single-Family Residential) and Lot A-19-A-2 was rezoned to DT-NCO (Downtown Neighborhood Center Overlay).
- 2015 Development Agreement executed for A-19-A-1.
- 2017 Development Agreement executed for A-19-A-2, and A-19-A-2 was further divided so that one portion (A-19-A-2A) could be sold for development, and the other (A-19-A-2B) could be retained by the County.

A-19-A-2B is included for clarity and discussion purposes. However, no development on this Countyowned parcel is part of these applications and none is anticipated in the near future.

The Final Subdivision Plat will create 161 new residential lots and one (1) commercial lot on three existing lots on the property known as A-19 in White Rock. In addition to the residential lots, there are a number of Homeowner Association (HOA) tracts that will be developed by the owner and maintained by the HOA. These include small parks, grouped mailbox locations and pedestrian passageways.

The four page Final Subdivision Plat is attached to this report as Exhibit E. Following plat recordation, the developers will work with the County to notify White Rock residents who live near the project of plans and scheduling for blasting, which is necessary due to the preponderance of rock on the site, and in order to install utilities. The project will be developed in phases, based upon infrastructure completion.

The graphic below depicts the basic subdivision layout, showing 161 residential lots, Commercial Tract D, and the revised street names per the County's recommendations.

Mirador Subdivision: 161 single-family lots and one commercial tract, Tract D

The Subdivision review criteria are the same for Preliminary and Final Plat. The majority of the responses are also the same as they were for the Preliminary Plat application and staff report with updates provided as applicable.

Sec. 16-153 - SUBDIVISION REVIEW CRITERIA

The Los Alamos County Code of Ordinances, Chapter 16, Development Code, Sec. 16-153 establishes eight (8) criteria for the Planning and Zoning Commission to use when reviewing an application for subdivision approval. They are:

(1) The development of the property shall substantially conform to the comprehensive plan and shall not be materially detrimental to the health, safety and general welfare of the county.

<u>Applicant Response</u>: The proposed development conforms to the comprehensive plan.

<u>Staff Response</u>: The proposed development is substantially in conformance with the comprehensive plan.

The Future Land Use Map designates Tract A-19-A-1 as Medium to High Density Residential, or 7 to 15 dwelling units per acre. This tract consists of $34.35 \pm$ acres and will contain 109 lots. While this calculates to a density of only 3.11 dwelling units per acre, this number is misleading in that a significant portion of the tract is undevelopable due to steep terrain and underlying rock. The typical lot size within this tract ranges from 5,000 square feet to 11,000 square feet. The smaller lots, at 5,000 square feet, correspond to a density of 8.7 dwelling units per acre. The proposed subdivision will have the "feel" of a neighborhood zoned R-1-5, which is the zoning of Tract A-19-A-1.

The other tract that will be developed for housing and commercial uses, Tract A-19-A-2A, is designated Mixed-Use on the Future Land Use Map. A Site Plan for the eastern portion of this tract will be reviewed at a future time. The majority of the tract will contain 50 residential lots, typically between 5,000 and 9,000 square feet. Both residential and commercial uses are allowed in the Mixed-Use land use designation.

The proposed subdivision supports all of the following Comprehensive Plan Goals and Policies, as previously noted at the time of Preliminary Plat review, and repeated here for the record pertaining to Final Plat approval:

3.1 Housing, Neighborhoods & Growth

3.1.1 HOUSING GOALS

- HG2. Provide a variety of housing types, sizes and densities
- HG3 Promote development of housing stock that would accommodate downsizing households

HOUSING - LAND USE POLICIES

- HLU.4. Promote design standards for high quality and good design of new housing
- *HLU.5. Develop and adopt new and mixed-use zoning districts*
- *HLU.6. Encourage new housing developments in proximity to workplaces*

NEIGHBORHOODS – INFRASTRUCTURE POLICIES

- NI.1. Maximize the use of County-owned land
- NI.2. Make strategic extensions of utilities to support development

3.1.2 NEIGHBORHOODS GOALS

• NG2. Promote the creation of a variety of housing options for all segments of the Los Alamos community

3.1.3 GROWTH GOALS

- *GG.1.* Plan for modest growth of an additional 2,000 residents in the next 5 to 10 years
- *GG.11.* Strive to make housing available to those who work in the County and want to live in the County
- GG.12. Enhance community pride

GROWTH - LAND USE POLICIES

• *GLU.1. Maximize the utilization of County-owned land*

<u>GROWTH – INFRASTRUCTURE POLICIES</u>

• GI.1. Promote public/private partnerships of utility extensions

3.2 - DEVELOPMENT, REDEVELOPMENT & DOWNTOWN

• DG.5. Focus increased residential densities on new development in and near downtown

DEVELOPMENT - LAND USE POLICIES

- DLU.1. Maximize the use of County-owned land
- DLU.6. Ensure greater certainty in the development review process especially if the application conforms to the Comprehensive Plan and the Future Land Use Map

<u>3.2 – DEVELOPMENT, REDEVELOPMENT & DOWNTOWN</u>

3.2.2 - REDEVELOPMENT GOALS

- RG1. Redevelop vacant blighted areas and underutilized properties
- RG2. Encourage infill development on underused or blighted sites

3.3 OPEN SPACE, TRAILS & MOBILITY

3.3.2 TRAILS AND GOALS

TRAILS – INFRASTRUCTURE POLICIES

• TI.1. Create designated, safe, convenient, and well maintained bike and pedestrian pathways and sidewalks

<u>3.3.3 – MOBILITY GOALS</u>

- MG.1. Support streets designed for the safety and comfort of all users
- MG.2. Maintain and improve transportation and mobility
- MG.4. Improve bicycle and pedestrian safety and convenience

(2) Except for the R-E and R-A zoning districts and developed areas where it is determined by the utilities manager that it is economically unfeasible to extend sewer lines, all subdivisions must be served or be capable of being served by all public utilities.

<u>Applicant Response</u>: Utilities are available and shall be extended into the subdivision. Pre-application meetings have occurred and conceptual utility plans review[ed] and discussed with County Utilities. Wet utilities will extend into the subdivision from [the] intersection of Sherwood Boulevard and State Road 4. Sanitary sewer gravity drains from west to east and no lift station/forcemain is required. Water mains will be looped internal through the subdivision.

Dry utilities have defined points of connection also at the intersection of Sherwood Boulevard and State Road 4 and provide proposed backbone layout to accommodate proposed development.

<u>Staff Response</u>: The subdivision will be served by public utilities. These are water, sewer, gas and electric. All utilities will be located within right-of-way or defined easements, which will be labeled for the type of easement and will include pipe sizes. All residential lots and HOA tracts are encumbered with a ten (10) foot wide public utility easement adjacent to road rights-of-way, except on corner lots, where the easement width adjacent to the side street is five (5) feet wide. There is also a five (5) foot wide public utility easement within all residential lots and HOA tracts on all other side and rear property lines. Pipe sizing and materials have been adjusted per the direction provided by the Utilities Manager.

(3) Provisions shall be made for the safe ingress, egress and circulation of vehicles, bicyclists and pedestrians.

<u>Applicant Response</u>: Subdivision includes extension of Sherwood Boulevard and La Vista Boulevard into the site. La Vista Boulevard is a 72-foot right-of-way which includes concrete sidewalks on each side, curb and gutter, and 28-feet of asphalt concrete roadway accommodating two-way traffic and bicycle lanes. Sherwood Boulevard is a 50-foot right-of-way which includes concrete sidewalks on each side, curb and gutter, and 28-feet of asphalt concrete roadway accommodating two-way traffic and bicycle lanes.

Project also includes development of neighborhood streets. Neighborhood Streets have a 50-foot right-of-way which includes concrete sidewalks on each side, curb and gutter, and 28-feet of asphalt concrete roadway accommodating two-way traffic and on-street parking.

<u>Staff Response</u>: The applicant has worked with the Engineering Division of the Public Works Department to establish the required rights-of-way and street sections. The latter include bicycle lanes on La Vista and on the section of Sherwood/Mirador adjacent to the future commercial development. It was determined that all other roadways/neighborhood streets within the subdivision will be sufficiently low volume traffic as not to warrant dedicated bicycle lanes. Allowing bicycle travel in the automobile lanes frees up the interior streets for parking on both sides. All streets have six (6) foot wide sidewalks on both sides. In addition, pedestrian access will be provided from the end of Confianza Street in A-19-A-2A to Sherwood/Mirador Boulevard.

(4) Adequate provisions shall be made for accepting expected drainage from other properties, for controlling drainage on the site and for directing it to the storm sewer or drainage system, including considerations for impact on downstream properties. The county engineer shall approve, disapprove or recommend modifications to the storm drainage plans.

<u>Applicant Response</u>: A master drainage plan (DMP) for Tract A-19 dated July 6, 2012 was prepared to support previous planning efforts. The DMP analyzed tract A-19 and the Canada del Buey arroyo. The

conclusion of the DMP is that the peak runoff from this site occurs before the peak flow of the main watershed occurs and that no increase in peak flow rate will be experienced downstream of subdivision and as such additional stormwater ponds are not required.

Additional analysis and design for on-site stormwater conveyance is provided and enclosed.

<u>Staff Response</u>: The County Engineer has pointed out the need for additional drainage inlets, especially at the bottom of internal streets that slope toward residential lots. The project engineer concurs with this conclusion and will provide such inlets with final engineering drawings. The County Engineer has also requested that the applicant provide an updated drainage report comparing the assumptions of the Master Drainage Study to the development as currently proposed, including drainage area and design storm for storm sewer and structures.

Specific requirements are outlined in the County Engineer's memorandum, Exhibit B. Most of these requirements do not pertain to the plat; rather they will be addressed with submittal of construction drawings. Those requirements that do pertain to the plat have been addressed.

(5) The necessary easements shall be provided for both existing and proposed utilities in an acceptable manner to the county engineer and utilities manager. Development of the property shall be in accordance with adopted utilities department plans and specifications.

<u>Applicant Response</u>: Proposed development of the property is in accordance with adopted utility department plans and specifications.

<u>Staff Response</u>: It was a condition of the Preliminary Plat that the Final Subdivision Plat identify and label all existing and proposed utility easements to the satisfaction of the County Engineer and the Utilities Manager. This has been done. Locations and sizes of easements have been provided for all public utility infrastructure. Private easements are identified in those locations where one property owner is burdened for the benefit of the adjacent owner.

(6) Outdoor activity areas, parking lots, outside storage areas, outdoor lighting, or other features or uses of the site or structures shall be adequately screened or otherwise controlled to effectively mitigate conflict with existing or potential adjacent land uses.

<u>Applicant Response</u>: The project does not propose to develop outdoor activity areas, parking lots, or outside storage areas. Outdoor lighting such as street lights shall be in accordance with approved County of Los Alamos standards.

<u>Staff Response</u>: HOA tracts are illustrated on the Site Plan and will be developed in conjunction with build-out of the various phases.

The County Engineer has recommended that street lighting match or be similar to that of the nearby neighborhood south of NM 4. He has suggested adjustments to specific locations of street lights. Final street lighting layout and details on foundations, poles, and luminaires will be provided with construction drawings.

As required by Code Section 16-276. – Outdoor Lighting, roadway lighting design categories must be approved by Council upon recommendation of the County Engineer. This action has been scheduled for the Council meeting of May 1, 2018.

(7) The capacity of those public services and facilities required to serve the proposed development (including but not limited to water, sanitary sewer, electricity, gas, storm sewer, streets, etc.) shall be adequate, or made to be adequate if improvements are required.

<u>Applicant Response</u>: Developer has collaborated with public service departments in preparation of the proposed site plan.

<u>Staff Response</u>: As this is a completely new development, all utilities will be brought to the site. The developer and project engineer have collaborated with the Utilities Department on the location, size and configuration of all utilities. The Utilities Department is satisfied with the submittals to date and has provided the applicants with redline comments and corrections to their drawings. The Utilities Manager and Senior Engineer have stated that these are all relatively minor and can be easily accomplished with the final set of construction drawings. It is noted that all utilities shall be installed in compliance with DPU construction standards, which have been provided to the design engineer.

(8) The subdivision is planned to retain as much as possible, all natural features such as watercourses, natural vegetation, terrain, existing structures, historic sites, archaeological sites, and other community assets, which if preserved, will contribute to the overall appearance and quality of life in the county of Los Alamos. If the property is designated on the county zoning map as a hillside area, the subdivision shall comply with the hillside development standards (section 16-576).

<u>Applicant Response</u>: A prominent outcropping exists on the western portion of the property and will be preserved. The site shall be contoured to accommodate the proposed residential and commercial uses. Residential lots shall be graded in a manner to convey storm water to the public right-of-way and no cross-lot drainage shall be permitted.

There are no known existing structures, historic sites, or archaeological sites within the subdivision.

<u>Staff Response</u>: Staff concurs with the applicant's response. The Canada del Buey, a natural drainage channel, traverses the property from west to east. Stormwater exits the site via an existing drainage structure at the far eastern end of the site. Drainage from the new development will be channeled to this arroyo, both by means of piped structures and surface flow. An existing $100\pm$ foot electric utility easement lies immediately within the entire northern boundary of the property and has been cleared of most vegetation. The remainder of the two eastern tracts will stay in their current natural state. However, at some time in the future, it is expected that the County will develop active recreational facilities within the open space at the northern end of La Vista. The County has requested and the applicant has provided language on the plat indicating this future use so as to alert future residents to expect development within this area.

INTERDEPARTMENTAL REVIEW COMMITTEE (IDRC)

The IDRC meeting on the Final Subdivision Plat took place on February 16, 2018. The committee reviewed each of the 20 conditions of approval adopted by the Planning and Zoning Commission on December 13, 2017 with the Preliminary Plat. The project manager relayed IDRC comments to the project engineer and owner. In addition, the County Engineer provided a detailed memorandum dated February 28, 2018 (Exhibit B) summarizing all remaining engineering issues. As discussed earlier in this report, all items pertaining to Final Plat have been addressed or are recommended conditions of approval related to future development. Remaining items are those that will be addressed with final construction and engineering plans to be submitted for permitting.

Also, it is noted that the Utilities Department was not able to attend the IDRC meeting but sent an email prior to the meeting indicating their support of moving forward the Final Plat to P&Z. See Exhibit D-2.

Subsequent to the IDRC meeting there was further communication between the project engineer and County staff, including Utilities, Engineering, and Planning, and several revisions were made per direction of staff to the Final Plat provided with this report.

NOTICE

The public hearing for Case No. SUB-2018-005 was noticed in the Los Alamos Daily Post on March 8, 2018, and posted on March 9, 2018. Property owner notices were mailed to all owners of real property located within 500 feet of the subject property, in accordance with, and in excess of the requirements of Article V, Section 16-192 of the Los Alamos County Development Code. See Exhibit C, a map of the properties to which notice of these cases was sent and a list of those property owners. No comments or concerns had been received as of Thursday, March 22, 2018.

FINDINGS OF FACT – Final Subdivision Plat

- Notice of this public hearing, setting forth the nature of the request, the specific parcel of property affected, and the date, time and place of the public hearing, was announced and published in <u>The Los Alamos Daily Post</u> on March 8, 2018, and property owners of real property located within 500 feet of the subject property were notified of this public hearing, all in accordance with the requirements of §16-192 of the Los Alamos Development Code.
- 2. The request is for approval of a Final Subdivision Plat for 161 single-family residential lots and one commercial lot.
- 3. The subdivision proposed is permitted within the R-1-5 and DT-NCO zoning districts, subject to review and approval by the Planning & Zoning Commission.
- 4. The subject property is currently addressed as 95 State Road 4.
- 5. The subject property is currently undeveloped.
- 6. The subject property is zoned R-1-5 (Single-family Residential) and DT-NCO (Downtown Neighborhood Center Overlay) as described in §16-533 and §16-540 of the Los Alamos County Development Code.
- 7. Single-family residential land uses are permitted uses in the R-1-5 and DT-NCO, per the Use Index Table contained in §16-287.
- 8. Issues brought forward at the IDRC meeting conducted on February 16, 2018, and subsequently, are identified and addressed in this report, in the memorandum from Engineering, and in the recommended conditions of approval.
- 9. Upon review by the IDRC, the application was unanimously (6-0) recommended for approval, subject to the recommended conditions of approval as outlined in this report.

EXHIBITS

Exhibit A: P&Z Preliminary Plat Conditions of Approval

Exhibit B: Eric Martinez, County Engineer, Memorandum February 28, 2018

Exhibit C: Map and List of Notified Property Owners (500 Feet)

Exhibit D: IDRC Report (D-1) and Email from J. Alarid, Utilities Manager (D-2)

Exhibit E: Applicant Materials:

- Application
- Final Plat 4 pages (11" x 17")

PLANNING & ZONING COMMISSION Meeting of : December 13, 2017

Case No. SUB-2017-0004: A-19 Preliminary Subdivision Plat

Approved list of conditions:

- 1. A cul-de-sac or other turnaround approved by Public Works shall be provided at the far western end of Sherwood Boulevard.
- 2. The applicant shall submit a Final Subdivision Plat for Planning and Zoning Commission approval, which is in substantial conformance with the Preliminary Plat.
- 3. All design issues must be resolved to the satisfaction of the County Engineer and the Utilities Manager prior to approval of Final Plat.
- 4. Drawings submitted for Final Plat must be at 95% or greater completion.
- 5. Add keyed notes and provide corrections to utility pipe sizes and materials per redline comments from the Utilities Manager transmitted on December 8, 2017.
- 6. All easements must be shown and labeled on the plat. Anything other than ROW needs a defined use easement, including any shared utility, drainage and/or pedestrian easements.
- 7. Provide evidence of performance bond prior to grading.
- Place the following note, or similar language, on the plat, overlapping the westernmost portion of Lot 2B (Tract C) and the easternmost portion of A-1 (Tract A), "Future recreational facilities by County."
- 9. Per the terms of the Development Agreement for A-19-A-2, the developer shall submit plans for the development of the commercial tract, Tract D, no later than 60 months from the date of closing on A-19-A-2, or September 22, 2022.
- 10. Street lighting shall be provided per the standards in the Los Alamos County Code of Ordinances, Chapter 16, Sec. 16-276 – Outdoor Lighting, and subject to approval by the County Engineer. La Vista and Sherwood (NM 4 to the commercial lot line) qualify as an RLDC-5 (continuous lighting), while the local streets qualify under RLDC-4 (roadway with lighted intersections and partial lighting). Partial lighting shall be provided at curvatures in the roadway and at cul-de-sacs.
- 11. An updated Traffic Impact Analysis (TIA) shall be provided prior to Final Plat. Include updates to trip distribution and capacity analysis, and a traffic signal warrant study at both intersections, noting at what stage of development signals will be warranted.
- 12. Provide an updated drainage report comparing the assumptions of the Master Drainage Study to the development as currently proposed, including drainage area and design storm for storm sewer and structures.

EXHIBIT 2 Exhibit A

- 13. Provide grading details along with details for proposed drainage structures, stormwater, erosion, stabilization and sediment controls, including any proposed Low Impact Development (LID)/green infrastructure stormwater management techniques.
- 14. Project Engineer shall perform an analysis of the Fire Code (NFPA 101) to determine if the residence on Lot 27, Block 1 must be sprinklered. If it is required, this shall be noted on the plat.
- 15. Provide additional stormwater inlets subject to the approval of the County Engineer to prevent on-lot flooding.
- 16. Street names are subject to approval by the County Surveyor and P&Z on the Site Plan and Final Plat. Propose a different name for "Valle" as the County already has streets named "Valle del Sol" and "Valle Vista". A street name should not change in the middle of its course. It is recommended that "Valle" and "Cadena" Streets be renamed "Cadena Loop".
- 17. Show lot addresses as assigned by the County Surveyor on the Final Plat.
- 18. Water lines must be fully looped throughout the site per the direction of the Utilities Manager.
- 19. Submit Plan & Profile information subject to approval of the County Engineer and Utilities Manager prior to Final Plat.
- 20. Label plat to show Public Access Easements through the subdivision and specifically through Parcel 1 from State Road 4 to the open space on Tract B.

MEMORANDUM

L S ALAM S

Public Works

1000 Central Avenue, Suite 160 Los Alamos, NM 87544 P 505.662.8150 F 505.662.8109

losalamosnm.us

DATE: February 28, 2018

- TO: Tamara Baer, RLA, ASLA Planning Manager
- THROUGH: Philo Shelton, P.E. Public Works Director PS
 - FROM: Eric Martinez, P.E., CFM County Engineer
 - CC: Paul Andrus, Community Development Director
 - RE: Mirador Subdivision Tract A-19 Final Subdivision Plat; Case SUB-2018-0005

In accordance with the February 16, 2018 IDRC meeting and the conditions of approval (particularly #1, 3, 4, 6, 10, 11, 12, 13, 15, 17 and 19) imposed by the Planning & Zoning Commission and accepted verbally by the applicant at the December 13, 2017 Planning & Zoning Meeting, the following conditions of approval are provided:

The Applicant shall address the following conditions related to the plat prior to final plat approval:

- Sherwood Blvd. (north of NM 4) to be renamed Mirador—provide street label/type, i.e. Street, Avenue, Road, etc.
- Indicate address for each lot as assigned by the County Surveyor.
- Adjust right of way boundaries to modify the knuckle geometric design to a traditional cul-de-sac at the western Cadena/Sherwood (now Mirador) Intersection.
- Ensure right of way boundary accommodates a minimum curb return radii of 30 ft. for collector streets (i.e. La Vista, Mirador) and 25 ft. for local streets and make adjustments if necessary.

Further, the following shall be included as a condition of final plat approval:

- The Applicant shall be responsible for future installation of a traffic signal and related equipment at the NM 4/Mirador/Sherwood Blvd. intersection if engineering warrants are met.
- An updated Traffic Impact Study shall be provided upon any of the following:
 - Site plan submittal for development of Commercial Tract D.
 - As required by the County Engineer based upon traffic operational performance, safety and/or capacity issues during or upon completion of residential build-out.
 - As required by the New Mexico Department of Transportation.

EXHIBIT 2

The Applicant, through their engineer, shall address all technical comments and corrections listed below to the satisfaction of the County Engineer prior to or upon application and submittal of construction plans for building permit:

DESIGN PLANS

- General Notes:
 - Add Minimum Material Testing Requirements (Subject to County Engineer Approval)
 - Add NDPES Requirements (SWPPP, NOI, NOT)
 - Add access to Visitors Center shall be maintained at all times
 - Add LAC Excavation & Traffic Permit Requirements
 - Add LAC Noise Ordinance Provisions
- Roadway:
 - Replace knuckle geometric design with a traditional cul-de-sac at the western Cadena/Mirador Intersection.
 - Add street name signs—use County detail for guide sign mounting on square tubing (attached) and follow MUTCD for letter heights below. Note: NM 4 is a higher speed facility requiring larger letter heights.

2009 Edition - Revision 2

Page 163

Type of Mounting	Type of Street or Highway	Speed Limit	Recommended Letter Hei	
			Initial Upper-Case	Lower-Case
Overhead	All types	All speed limits	12 inches	9 inches
Post-mounted	Multi-lane	More than 40 mph	8 inches	6 inches
Post-mounted	Multi-lane	40 mph or less	6 inches	4.5 inches
Post-mounted	2-lane	All speed limits	6 inches*	4.5 inches*

Table 2D-2. Recommended Minimum Letter Heights on Street Name Signs

* On local two-lane streets with speed limits of 25 mph or less, 4-inch initial upper-case letters with 3-inch lower-case letters may be used.

- Add curve warning signs w/speed plaque for curves w/15 mph design speed.
- Revise stop sign size from 24" to 30"; provide stop signs at all intersections and stop bars at intersections with collector streets; determine if a 3-way stop at La Vista/Mirador is necessary.
- Delete 6" Bike Lane Stripe on local roads
 - Delete bike lane and striping from local road Typical Section
- La Vista: Provide bike lane pavement markings.
- Mirador:
 - NM 4 to western boundary of Tract D: Remove the diagonal stripe on the shoulder area; provide center stripe, bike lanes w/bike lane symbols and bike lane ends/begins signs; transition the east to southbound bike lane between the two vehicular lanes at NM 4.
 - Western boundary of Tract D to La Vista: Remove shoulder/bike lane stripe and provide sharrows.
- Provide Street Light placement adjustments as recommended by the County Engineer; provide material details i.e. foundation, pole, & luminares.

EXHIBIT 2

- Provide missing information on Roadway Plan & Profile sheets (i.e. stationing, profile grades, etc.)
- Clarify driveway locations & size, or address how this is to be determined.
- Grading & Drainage:
 - Cadena (north side) and Confianza West: Provide superelevated cross section around curves at bottom of steep grades to maintain flow within the street section.
 - Ensure bulb-out areas and finished floor elevations are elevated above highest adjacent flow line and projected water surface levels for the 100 year storm (or better).
 - Recommend Low Impact Development (LID)/water harvesting measures within the HOA lots to reduce street flow (quantity & velocity) while providing irrigation to planned landscaped areas.
 - Cadena/Sherwood (west intersection): Provide a valley gutter (east to west) with revised cul-de-sac geometry.
 - Recommend extension of the storm drain system on Sherwood with additional inlet to capture drainage from Cadena's steep grade; otherwise, provide hydrological calculations/models demonstrating 100 yr. water surface levels are contained within the street curb and gutter section.
 - Provide additional storm drop inlets for increased storm water capacity on Confianza East as recommended by Applicant's engineer.
 - Protect drainage outfalls from child entry.
 - Metal (Ultraflow or similar)/HDPE/Polyethylene pipe may be used in lieu of RCP; result would reduce costs and wall thickness while increasing available space.
 - Recommend a 24" minimum storm drain pipe size for ease of maintenance.
 - Confirm if the proposed 24" storm drain pipe near Manhole #5 is of adequate size given the collection area.
 - Label manholes on sheet SD1 for ease of locating them on plan and profiles sheets.
 - Confirm if proposed 24" storm drain pipe is of sufficient size for future commercial area.
 - On storm drain profile sheets, provide shaded areas to illustrate utilities that may conflict particularly with lateral crossings.
 - All retaining walls proposed shall be designed and stamped by a NM licensed engineer.
 - The Applicant anticipates steep slopes within the development will consist largely of rock material. Provide a contingency for terrain management/erosion control of loose material on steep slopes to mitigate wash out and sediment transport on sidewalks, streets and the storm drain system.

DRAINAGE REPORT

• Provide a 100 yr. Base Flood Elevation (BFE) within Flood Zone A at Canada del Buey and a water surface elevation after build out and include a "No-Rise" Certification (sample below). County provided topo map south of NM 4 (500'x300') attached as requested by Applicant's engineer for this purpose.

No-Rise Certification Sample:

Approximately 0.XX acres (or square feet) of the proposed project is located in Zone A of the 100-year Floodplain, per FEMA Flood Insurance Rate Maps 35028C0130C dated 07/18/2011 within the Canada del Buey. The additional storm drainage from the proposed project would not significantly affect the functions and values of floodplains in the project area, nor increase or impact the 100-year flood elevations of the Canada del Buey, due to the ... (support your findings, i.e. modeling mentioned above shows no change in BFE/WSEL, etc.).

- Page 2, Tables Check math as there appears to be an addition error.
- Indicate if roof top and driveway drainage considered in drainage volume calculations and sizing of infrastructure.
- Discuss the parameters and assumptions in quantifying runoff for the commercial area.
- Discuss inlet and roadway storm capacity (i.e. 10, 25, 50, or 100 year).
- Discuss 401/404 Permit requirements for outfall construction within Canada del Buey (water of the US) and developers follow up actions for compliance. Note, County Code excerpt below regarding duties and responsibilities of the floodplain administrator (i.e. County Engineer):

Chapter 24, Article II, Division 4, Section 24-72, Paragraph 4:

Review permits for proposed development to assure that all necessary permits have been obtained from those federal, state or local governmental agencies (including Section 404 of the Federal Water Pollution Control Act Amendments of 1972, 33 U.S.C. 1334) from which prior approval is required.

TRAFFIC IMPACT STUDY

- Study may also require review by NMDOT District Five Traffic Engineer. Applicant is responsible to coordinate with NMDOT.
- NM 4/La Vista: Re-analyze with northbound & southbound shared Left/Thru lanes.

GEOTECHNICAL REPORT

• Provide all findings of geotechnical investigations and sampling.

EXHIBIT 2 Exhibit C

ADDRESS	OWNERNAME	OWNERADDRESS
80 STATE ROAD 4	WHITE ROCK BAPTIST CHURCH	80 LA PALOMA DR
99 LA VISTA DR	COFFELT KERRY P & LORI J	99 LA VISTA DR
74 LA PALOMA DR	BLISS JOHN & NANCY	74 LA PALOMA DR
72 LA PALOMA DR	LANG PHILLIP M	72 LA PALOMA DR
70 LA PALOMA DR	ILG WENDY E	70 LA PALOMA DR
77 LA PALOMA DR	REINOVSKY FAMILY TRUST	77 LA PALOMA DR
68 LA PALOMA DR	HILL BRANDON & ANGELE	68 LA PALOMA DR
64 LA PALOMA DR	SALINAS HILARIO L	64 LA PALOMA DR
101 LA VISTA DR	READ GARY W & LAURA L REV TRUST	101 LA VISTA DR
62 LA PALOMA DR	LILES LAURA A	62 LA PALOMA DR
60 LA PALOMA DR	SHORT KERMIT M	60 LA PALOMA DR
67 LA PALOMA DR	STORMS STEVEN A	67 LA PALOMA DR
58 LA PALOMA DR	NARANJO RICHARD M & KELLY R	58 LA PALOMA DR
56 LA PALOMA DR	COURT DONALD B	56 LA PALOMA DR
63 LA PALOMA DR	O'DONNELL JAMES P & KATE L	63 LA PALOMA
59 LA PALOMA DR	BRENT ROY W JR & DIANE L	59 LA PALOMA DR
97 MESA VERDE DR	TUGGLE DOUGLAS L Y KRISTOPHER S	97 MESA VERDE ST
9999 GRAND CANYON DR	LOS ALAMOS COUNTY	P O BOX 30
53 LA PALOMA DR	BROTHERS BRAD D & JULIE ANN	53 LA PALOMA
		5710 KINGSWOOD ROAD
51 LA PALOMA DR	PETER WILLIAM K REVOC TRUST	BETHESDA,MD
15 GRAND CANYON DR	CHURCH OF THE NAZARENE	15 GRAND CANYON DR
49 LA PALOMA DR	MORIN MARIO	49 LA PALOMA DR
47 LA PALOMA DR	MANSELL LESLIE	47 LA PALOMA DR
45 LA PALOMA DR	THACKER DOUGLAS J & EMILY NIKAY-	45 LA PALOMA
43 LA PALOMA DR	CARROLL DAVID W & JANICE	43 LA PALOMA DR
16 GRAND CANYON DR	CRAWFORD PAULA & VIVES THOMAS	16 GRAND CANYON
20 STATE ROAD 4	ACOMB FAMILY REVOCABLE TRUST	20 STATE ROAD 4
95 STATE ROAD 4	INCORPORATED COUNTY OF LOS ALAMOS	P.O. BOX 30
95 STATE ROAD 4	INCORPORATED COUNTY OF LOS ALAMOS	P.O. BOX 30
108 STATE ROAD 4	INCORPORATED COUNTY OF LOS ALAMOS	P.O. BOX 30
115 STATE ROAD 4	INCORPORATED COUNTY OF LOS ALAMOS	P.O. BOX 30
118 STATE ROAD 4	INCORPORATED COUNTY OF LOS ALAMOS	PO BOX 30
116 STATE ROAD 4	INCORPORATED COUNTY OF LOS ALAMOS	PO BOX 30
9999 SHERWOOD BLVD	LOS ALAMOS COUNTY	P O BOX 30
11 SHERWOOD BLVD	CANTRUP PETER H REVOC TRUST	PO BOX 4610
	GARTZ DAVID R & STACY & GARTZ REVOC	
106 LONGVIEW DR	LIVING TRUST	305 VALLE DEL SOL
31 SHERWOOD BLVD	GIBSON PRODUCTS CO	1014 VINE ST 7TH FLOOR

EXHIBIT 2 Exhibit C

10 SHERWOOD BLVD	LOS ALAMOS COUNTY	P O BOX 30
118 STATE ROAD 4	TIME OUT PIZZERIA LLC	118 STATE ROAD 4
116 STATE ROAD 4	TIME OUT PIZZERIA LLC	118 STATE ROAD 4
9999 LOUISE AVE	LOS ALAMOS COUNTY	P O BOX 30
9999 LOUISE AVE	LOS ALAMOS COUNTY	P O BOX 30
STATE ROAD 4	INCORPORATED COUNTY OF LOS ALAMOS	PO BOX 30
54 LA PALOMA DR	HILL THOMAS R	54 LA PALOMA DR
	SPRINKLE JAMES K JR & JONES JENIFER	
52 LA PALOMA DR	REVOC LIVING TRUST	52 LA PALOMA DR
50 LA PALOMA DR	TEMPLE BRIAN A & KIMBERLY	50 LA PALOMA DR
46 LA PALOMA DR	FERENBAUGH ROGER W	46 LA PALOMA DR
48 LA PALOMA DR	JULIANI RICHARD P & AUDREY M	48 LA PALOMA
44 LA PALOMA DR	ANDERSON SCOTT & JAYNE	44 LA PALOMA DR
50 STATE ROAD 4	INCORPORATED COUNTY OF LOS ALAMOS	P.O. BOX 30
42 LA PALOMA DR	MEDRICK CHARLES G & GAIL P	42 LA PALOMA DR
40 LA PALOMA DR	JAMES HARGIS G & ENRIQUEZ BIANCA M	40 LA PALOMA DR
129 STATE ROAD 4	INCORPORATED COUNTY OF LOS ALAMOS	P.O. BOX 30
	DEPT. OF THE INTERIOR/BUREAU OF INDIAN	PO BOX 26567, ALBUQUERQUE,
133 STATE ROAD 4	AFFAIRS/PUEBLO OF SAN ILDEFONSO	NM
95 STATE ROAD 4	INCORPORATED COUNTY OF LOS ALAMOS	P.O. BOX 30

|--|

IDRC REPORT

Case: SUB-2018-0005 - A-19 Final Plat

Date of Meeting: February 16, 2018

Member/	Dept.		Recommended Conditions/Comments		Арр	Den
Alternate		ended		roved	roved w/ ditions	ied
<u>M. Arellano / J. Dudziak</u>	Building					
T. Baer	Planning	×	See attached.		x	
D. Erickson	Traffic	Х		×		
J. Alarid / P.Guerrerortiz**	Utilities			x		
A. Gurule / L. Martinez	Env. Serv.					
편 E. Martinez	PW	×	See attached.		×	
A. Millmann / J. Naranjo	Planning	Х		x		
J. Wetteland / S. Rinaldi	Fire	Х	See attached.		x	
OTHERS ATTENDING:						
Chris Wilson	Parks	Х				
Jason Romero	РW	Х				
Lucas Fresquez	Assessors	Х				
 * Blue strikethrough indicates not present at meeting. ** No representation from Utilities. However, voted to a 	es not prese tilities. Howe	nt at ever, v	meeting. voted to approve via email.			
]

MOTION: <u>Anders Millmann</u> made a motion to **approve with conditions** (items pending from Preliminary Plat Conditions of approval- see staff report). Eric Martinez seconded. From: Alarid, JamesSent: Thursday, February 15, 2018 4:49 PMTo: Baer, Tamara

Cc: Guerrerortiz, Patricio; Marez, Stephen

Subject:IDRC Tomorrow

Tamara,

We have completed a cursory review of the A-19 construction drawing submittal. The utility plan set is complete and we can coordinate our detailed comments with the consultant over the next few weeks. We will not have a representative in tomorrow's IDRC. Out department's recommendation is to approve the project going forward to the P&Z for final plat approval.

Let us know if you have any question.

Sincerely,

James

L@S ALAM@S Community Development

SUBDIVISION APPLICATION

Los Alamos County Community Development Department
1000 Central Ave, Suite 150, Los Alamos NM 87544

(505) 662-8120

SUB-7018-0005
This application is for: SKETCH PLAN PRELIMINARY PLAT FINAL PLAT FINAL PLAT Property to be Subdivided: 95 Stable 24 4 Address Address Final PLAT Final PLAT Final PLAT
Zoning District: High Denisty/ Area (Acres): 60.974 # Lots Proposed: 161 Vacant Land
APPLICANT (Unless otherwise specified, all communication regarding this application shall be to Applicant): Name: Huitt-Zollars, Inc c/o Scott Eddings Phone: 505-892-5141 505-235-7211 Please Print Cell #:
PROPERTY OWNER(s) (If different from Applicant)
Name: Adam Thornton Phone: 505-338-1418 Cell #: 505-338-1418
Address: P.O. Box 1443, Corrales, NM 87048 Email:E
My/Our signature(s) below indicates that I/We authorize the Applicant to make this subdivision application on my/our behalf $\frac{2-8-18}{\text{DATE}}$
SIGNATURE DATE

.

 \cdot^{t}

EXHIBIT 2 Exhibit E - Application

SUBDIVISION REVIEW CRITERIA:

The Los Alamos County Code of Ordinances, Chapter 16, Development Code, Sec. 16-153 establishes eight (8) criteria for the Planning and Zoning Commission to use when reviewing an application for subdivision approval. Please review each of the criteria listed and describe how your application meets the criteria. You will also be asked to discuss the criteria at your public hearings. Attach additional sheets as needed.

(1) The development of the property shall substantially conform to the comprehensive plan and shall not be materially detrimental to the health, safety and general welfare of the county.

The proposed development conforms to the comprehensive plan.

(2) Except for the R-E and R-A zoning districts and developed areas where it is determined by the utilities manager that it is economically unfeasible to extend sewer lines, all subdivisions must be served or be capable of being served by all public utilities.

Utilities are available and shall be extended into the subdivision. Pre-application meetings have occurred and conceptual utility plans review and discussed with County Utilities. Wet utilities will extend into the subdivision from intersection of Sherwood Boulevard and State Road 4. Sanitary sewer gravity drains from west to east and no lift station/forcemain is required. Water mains will be looped internal through the subdivision.

Dry utilities have defined points of connection also at the intersection of Sherwood Boulevard and State Road 4 and provide proposed backbone layout to accommodate proposed development

(3) Provisions shall be made for the safe ingress, egress and circulation of vehicles, bicyclists and pedestrians.

Subdivision includes extension of Sherwood Boulevard and La Vista Boulevard into the site. La Vista Boulevard is a 72-foot right-of-way which includes concrete sidewalks on each side, curb and gutter, and 28-feet of asphalt concrete roadway accommodating two-way traffic and bicycle lanes. Sherwood Boulevard is a 50-foot right-of-way which includes concrete sidewalks on each side, curb and gutter, and 28-feet of asphalt concrete roadway accommodating two-way traffic and bicycle lanes.

Project also includes development of neighborhood streets. Neighborhood Streets have a 50-foot right-ofway which includes concrete sidewalks on each side, curb and gutter, and 28-feet of asphalt concrete roadway accommodating two-way traffic and on-street parking.

(4) Adequate provisions shall be made for accepting expected drainage from other properties, for controlling drainage on the site and for directing it to the storm sewer or drainage system, including considerations for impact on downstream properties. The county engineer shall approve, disapprove or recommend modifications to the storm drainage plans.

A master drainage plan (DMP) for Tract A-19 dated July 6, 2012 was prepared to support previous planning efforts. The DMP analyzed tract A-19 and the Canada De Buey arroyo. The conclusion of the DMP is that the peak runoff from this site occurs before the peak flow of the main watershed occurs and that no increase in peak flow rate will be experienced downstream of subdivision and as such additional stormwater ponds are not required.

Additional analysis and design for on-site stormwater conveyance is provided and enclosed.

 (3) The necessary easements shall be provided for both existing and proposed utilities in an acceptable manner to the county engineer and utilities manager. Development of the property shall be in accordance with adopted utilities department plans and specifications. Proposed development of the property is in accordance with adopted utility department plans and specifications. (6) Outdoor activity areas, parking lots, outside storage areas, outdoor lighting, or other features or uses of the sile or structures shall be adequately screened or otherwise controlled to effectively mitigate conflict with existing or potential adjacent (and uses. The project does not propose to develop outdoor activity areas, parking lots, or outside storage areas. Outdoor lighting such as street lights shall be in accordance with approved County of Los Alamos standards. (7) The capacity of those public services and facilities required to serve the proposed development (including but not limited to water, sanitary sever, electricity, gas, storm sever, streets, etc.) shall be adequate, or made to be adequate if improvements are required. Developer has collaborated with public service departments in preparation of the proposed site plan. (8) The subdivision is planned to retain as much as possible, all natural features such as watercourses, natural vegetation, terrain, existing structures, historic sites, archaeological sites, and other community assets, which if preserved, will contribute to the overall appearance and quality of life in the county of Los Alamos. A prominent outcropping exists on the western portion of the property and will be preserved. The site shall be contoured to accommodate the proposed releating and no cross-lot drainage shall be adequate to the proposed sites, or chaeological sites within the subdivision. 	manner to the county engineer and utilities manager. Development of the property shall be in	
 (6) Outdoor activity areas, parking lots, outside storage areas, outdoor lighting, or other features or uses of the site or structures shall be adequately screened or otherwise controlled to effectively mitigate conflict with existing or potential adjacent land uses. The project does not propose to develop outdoor activity areas, parking lots, or outside storage areas. Outdoor lighting such as street lights shall be in accordance with approved County of Los Alamos standards. (7) The capacity of those public services and facilities required to serve the proposed development (including but not limited to water, samitary sever, electricity, gas, storm sever, streets, etc.) shall be adequate, or made to be adequate if improvements are required. Developer has collaborated with public service departments in preparation of the proposed site plan. (4) The subdivision is planned to retain as much as possible, all natural features such as watercourses, natural vegetation, terrain, existing structures, historic sites, archaeological sites, and other community assets, which if preserved, will contribute to the everall appearance and quality of life in the county of Los Alamos standards. 		
 sile or structures shall be adequately screened or otherwise controlled to effectively mitigate conflict with existing or potential adjacent land uses. The project does not propose to develop outdoor activity areas, parking lots, or outside storage areas. Outdoor lighting such as street lights shall be in accordance with approved County of Los Alamos standards. (7) The capacity of those public services and facilities required to serve the proposed development (including but not limited to water, sanitary sever, electricity, gas, storm sever, streets, etc.) shall be adequate, or made to be adequate if improvements are required. Developer has collaborated with public service departments in preparation of the proposed site plan. (8) The subdivision is planned to retain as much as possible, all natural features such as watercourses, natural vegetation, terrain, existing structures, historic sites, archaeological sites, and other community assets, which if preserved, will contribute to the overall appearance and quality of life in the county of Los Alamos. (8) The subdivision is planned to retain as much as possible, all natural features such as watercourses, natural vegetation, terrain, existing structures, historic sites, archaeological sites, and other community assets, which if preserved, will contribute to the overall appearance and quality of life in the county of Los Alamos. A prominent outcropping exists on the western portion of the property and will be preserved. The site shall be contoured to accommodate the proposed residential and commercial uses. Residential lots shall be permitted. 	Proposed development of the property is in accordance with adopted utility department plans and	d specifications.
 Outdoor lighting such as street lights shall be in accordance with approved County of Los Alamos standards. (7) The capacity of those public services and facilities required to serve the proposed development (including but not limited to water, sanitary sewer, electricity, gas, storm sewer, streets, etc.) shall be adequate, or made to be adequate if improvements are required. Developer has collaborated with public service departments in preparation of the proposed site plan. (8) The subdivision is planned to retain as much as possible, all natural features such as watercourses, natural vegetation, terrain, existing structures, historic sites, archaeological sites, and other community assets, which if preserved, will contribute to the overall appearance and quality of life in the county of Los Alamos. A prominent outcropping exists on the western portion of the property and will be preserved. The site shall be contoured to accommodate the proposed residential and commercial uses. Residential lots shall be graded in a manner to convey storm water to the public right-of-way and no cross-lot drainage shall be permitted. 	site or structures shall be adequately screened or otherwise controlled to effectively mitigate co	r uses of the onflict with
 <i>but not limited to water, sanitary sewer, electricity, gas, storm sewer, streets, etc.) shall be adequate, or made to be adequate if improvements are required.</i> Developer has collaborated with public service departments in preparation of the proposed site plan. (8) The subdivision is planned to retain as much as possible, all natural features such as watercourses, natural vegetation, terrain, existing structures, historic sites, archaeological sites, and other community assets, which if preserved, will contribute to the overall appearance and quality of life in the county of Los Alamos. A prominent outcropping exists on the western portion of the property and will be preserved. The site shall be contoured to accommodate the proposed residential and commercial uses. Residential lots shall be graded in a manner to convey storm water to the public right-of-way and no cross-lot drainage shall be permitted. 	Outdoor lighting such as street lights shall be in accordance with approved County of Los Alamo	areas. DS
(8) The subdivision is planned to retain as much as possible, all natural features such as watercourses, natural vegetation, terrain, existing structures, historic sites, archaeological sites, and other community assets, which if preserved, will contribute to the overall appearance and quality of life in the county of Los Alamos. A prominent outcropping exists on the western portion of the property and will be preserved. The site shall be contoured to accommodate the proposed residential and commercial uses. Residential lots shall be graded in a manner to convey storm water to the public right-of-way and no cross-lot drainage shall be permitted.	but not limited to water, sanitary sewer, electricity, gas, storm sewer, streets, etc.) shall be adeq	
natural vegetation, terrain, existing structures, historic sites, archaeological sites, and other community assets, which if preserved, will contribute to the overall appearance and quality of life in the county of Los Alamos. A prominent outcropping exists on the western portion of the property and will be preserved. The site shall be contoured to accommodate the proposed residential and commercial uses. Residential lots shall be graded in a manner to convey storm water to the public right-of-way and no cross-lot drainage shall be permitted.	Developer has collaborated with public service departments in preparation of the proposed site pl	lan.
shall be contoured to accommodate the proposed residential and commercial uses. Residential lots shall be graded in a manner to convey storm water to the public right-of-way and no cross-lot drainage shall be permitted.	natural vegetation, terrain, existing structures, historic sites, archaeological sites, and other co assets, which if preserved, will contribute to the overall appearance and quality of life in the co Alamos.	ommunity ounty of Los
There are no known existing structures, historic sites, or archaeological sites within the subdivision.	shall be contoured to accommodate the proposed residential and commercial uses. Residential shall be graded in a manner to convey storm water to the public right-of-way and no cross-lot dra	lots
	There are no known existing structures, historic sites, or archaeological sites within the subdivisi	ion.

.

REQUIRED SUBMITTALS:
Check each of the boxes to indicate that you have attached two (2) full size (24" x 36") paper copies of each of the following, and one complete electronic copy of all materials:
I Proof of property ownership.
X A Vicinity map, showing the boundaries of the property to be subdivided, and all adjacent lots within 300 feet.
A scaled Plat or survey at 1 inch to 100 feet, including all the following information: (Note: For smaller properties, a legal description with metes and bounds, may be acceptable. Check with CDD staff.)
X Locate and label all existing utility lines on the site. (Existing gas and electric service lines must be located by the Los Alamos County Utilities Department prior to submittal of this application.)
Show and label the footprint of all existing buildings and structures on the site.
Show the footprint of all buildings and public rights-of-way within 20 feet of all boundaries of the site.
X Show, dimension and label all existing and proposed easements.
THIS SECTION TO BE COMPLETED BY THE COMMUNITY DEVELOPMENT DEPARTMENT
For County Use:
Date of Submittal: 2/9/18 Staff Initial:
Date of Submittal: 2/9/18 Staff Initial: CDD Application Number: SVB-2018-0005 Fees Paid: NA

Additional information for Subdivision Applicants:

Sec. 16-459. - Relationship between sketch, preliminary and final plat.

No preliminary plat shall be considered by the planning and zoning commission unless it substantially conforms to the approved or conditionally approved sketch plan. No final plat shall be considered by the planning and zoning commission unless it substantially conforms to the approved or conditionally approved preliminary plat. Plats that do not substantially conform shall be resubmitted at the sketch plat stage. Plats containing five lots or less after utility or public or private roadway improvements under article VI of this chapter may submit sketch, preliminary and final plats as a single plat for approval.

EXHIBIT 2 Exhibit E - Application

Sec. 16-458. - Subdivision time periods.

- (a) There shall be no more than six months between final action on a sketch plan and application for preliminary plat. There shall be no more than 12 months between final action on a preliminary plat and application for final plat. Approved or conditionally approved final plats shall be filed by the applicant or agent with the county clerk within 12 months of the date of final action on a final plat.
- (b) Whenever the time period for filing of the application or filing with the county clerk expires, any and all applications for subdividing the same parcel of property shall be treated as a new application.

6			ł				DESCRIPTION	Щ 41
MEADOW		ג ב	Ę				A CERTAIN TRACT OF LAND SITUATE WITHIN THE RAMON VIGIL GRAN", LOS ALAMOS COUNTY, NEW MEXICO, SAID TRACT BEING ALL OF TRACTS 419-42A, 4-19-42B, AND A-19-41, AS SHOMN AND DESISANTED ON THE PLAT THEREOF, RECORDED IN THE OFFICE OF THE LOS ALAMOS	
		MIRADOR	ደ				COUNTY CLERK, ON SEPTEMBER 15, 2017 IN PLAT BOOK 117, PAGE 786, AS DOCUMENT NUMBER 231910.	
	TRACT	CT A-19-A-1, A-19-A-2A AND A-19-A-2B	A AND A-	-19-A-2B			SAID PARCEL CONTAINING A TOTAL OF 80.2929 ACRES (2,628,360 SQUARE FEET) MORE OR LESS.	
NN Y	BEING A	A PART OF THE RAMON VIGIL C	NON VIGI	IL GRANT			COUNTY APPROVALS THIS PLAT IS HERE & APPROVED	
		MARCH 2018)			COUNTY SURVEYOR DATE	
P	DEDICATION	1		FOR REF	FOR STREET ADDRESSING REFER TO SHEET 3	<u>ଅ</u>	COUNTY ENGINEER DATE	
	The real states shown that the excitence of the units part is strongered and suborivating in accordance with the withes and desires of the undersigned Owner(s) there is a least of one heavy deduces all pulsic lights-downly and parts within an a strong stronger to the eastements shown or noted hereon, at eastements shown or noted on the plat including the right of ingress and egress eastements shown or noted on the plat including the right of ingress and egress	a surveyer and anothor more more restrict and designed Owner(s) thereof, and the Owner(s) of such y and parks which are shown hereon to the County of how no noted hereoe, and to hereby grant any and all ght of ingress and egress.					UTILITIES MANAGER DATE DATE	
	CWNERS (TRACT A-19-4-2A AND A-19-A-2B): LOS ALAMOS COUNTY		OWNERS (TRACT A-19.4-1). SITE A-15.4-1 ACOUSTION GROUP LLC	ISITION GROUP LLC			THIS PLAT IS HEREBY APPROVED THIS DAY OF 2018, BY THE LOS ALAMOS COUNTY PLANNING AND ZONING COMMISSION, INCORPORATED COUNTY OF LOS ALAMOS.	
	HARRY BURGESS, LOS ALAMOS COUNTY MANAGER	DATE	C. ADAM THORNTON, MANAGING MEMBER	DATE			CHAIR LOS ALAMOS COUNTY DI ANNING, ANN PORTING COUNTY	
	STATE OF) SS COUNTY OF)	STATE OF COUNTY OF	ss (
	Cn this day of ,20 , before me the un for said County and State personally speared Harry is soon, did say that he is the County Manager of Los that he signed this instrument on behalf of said County said County.	before me the undersigned Notary Public in and suppeared Harry Bugess, who being by me duly Manager of Los Aamos Courty, New Mexico, duly and Cay Manager of Los Aamos Courty, New Mexico, dudy seven, did say 1 that of said Courty as the free act and deed of Mexico and that he s	, 20 , before me the u , 20 , before me the u , personally appeared C. Ac that he is the Managing Memb exico corporation organized unc evico corporation instrument on behalf corporation.	On this day of20 , before me the undensigned litotary bubil: in and for stald County and State, personally appeared C. Adam Thornton, who being by me provide the start with the is the Managing predimente of State - 14-94-14 dequation Group LLC, a New Moxico carporation organized under the laws of the State of New actions and that the signed this instrument on behalf of said corporation as the free and device disatic carporation.			DIRECTOR LOS ALMOS COUNTY COMMUNITY DEVELOPMENT DEPARTMENT ATTEST:	
/	Notary Public	Notery Public						
/	My Commission Expires	My Commission Expires					BY: DATE	
STREET				NOTES: UNLESS OTHERWISE INDICATED:	WISE INDICATED:			
		01 <u>ES</u> Distances show Mexico State Pla Distances show are crund distan		els 1 thru 9 will remain in private denses Association (HC/A). Tra ty of Los Alemos by this (PA). Tra Utility Easement, to elimitate pro- ses & Ublity Easement, a 20 Publi Feasements. 20' wide Eliectrical (ments and a 40' Public Utility & P	Parcels 1 thru 9 will remain in private commethy to be maintained by a Homevenese secosistion (HCA). Tracts: A B and C are brand podicated to the County of Los Atemnos by this plat. Also to vacate an visiting 90' ingress Egress and Utility Easement, to initiate provious in Tract lines and no create a 60' Public Access & Unity Easement, a 20' Public Utility Easement, 3 variable width Public Utility Easements and a 40' Public Utility Easement, 20' X 20' Electrical Utility Easements and a 40' Public Utility & Pedestrian Easement.	to the Egross Public Public I Utility	COUNTY FILING CERTIFICATION	
		 The combined ground to grid factor is: 0.896/0469 (1.00033064). Elevations are NAV/D68. No kuildings existing on the surveyed property. 	There adjac detail withir	e is a ten (10) foot wide public util cent to road rights-of-way being g assement wicch adjacent to the sid al shown hereon. There is also al n all lots and tracts on all other sid	There is a test of (C) took wide public utilys exement within the lots and tract adjacent to road right-softway being granted hereon eacept for come for wide the essement wich adjacent; to the side street is only five (C) feet wide put the detail shown hereor. There is also a five (D) took vide public utility easem within all lots and tracts on all other side and rear poperly lines.	s where r the easement	IF NEW MEXICO) SI OF LOS ALAMOS) Y CERTIFY THAT THIS INSTRUMENT WAS FLED FOR RECORD AS DOCUMENT NO	
P P A C.		DUNDARY EVIDENCE: UNLES		roperty corners are found or set w is cap stamped LS 7482.	All property corners are founc or set with a 5/8" \times 24" rebar with red or yellow plasts: cap stamped LS 7482.	low	ON THE DAY OF2016, ATOCLOCKM. AND DULY RECORDED IN PLAT BOOK PAGESOF THE RECORDS OF SAID COUNTY.	
AD SILL	ž.	Found 3/2 rebar with 3 1/2 aluminum cap stamped "LS 8732". 2 Found NMDOT T-rail.	Beari Distai recor	ings are based on those for Tract inces are horizontal ground distar id.	Bearings are based on those for Tract A-19-A Los Alamos County Tracts. Distances are horizontal ground distances in feet. All bearings and distances are ecoud.	ces are		
Racy alter Plan		$\label{eq:cond} \ensuremath{\Re^*}\ \mbox{rebar with } 1/a^*\ \mbox{orange}\ \mbox{plastic cap stamped "LS 15700"}.$ Found moruments are iacored with a washer stammed "LS 7482".	Lot lines	are radial or perpencícular	to street lines (unless otherwise indica	ited).	COUNTY CLERK DATE	
ALL ALL	6 1		u u O	- access easement - drainage easement				
	1 C AD TAN WAY WILL LADOR		P.U.E. RAD	 E public utility easement radial bearing 				
	- the state	101	AC	,			SURVEYOR'S CERTIFICATE	
5 () 4		C RAND	C <*				 Kim C. Stelzer, New Mexico Registered Land Surveyor No. 7482, do hereby certify that the plat shown hereon was prepared under my supervision, and that the same is true and correct to the best of my knowledge and beliat. This survey conformat on the Land Surveying Standards as adopted by the New Mexico State Board of Reutistrich for Professional Encineers and Land Surveyors and the Courth of Los Manoo. 	
B There is a second		/		1. LOT 27, BLOCK 115 SUB	JECT TO FIRE MARSHALL R	EVIEW OF	Subdivision Ordinance.	
	S I V	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		BUILDING PERMIT TO CC REQUIREMENTS.	BULLDING PERMIT TO CONFIRM FIRE SPRINKLER REQUIREMENTS.		Kim C. Stelzer NMPLS No. 7482	
-	4 5 8 7 8 9 1		-	SUBDIVISION DATA				
2) 2) 31 81 81 81 81 81 81 81 81 81 81 81 81 81	(5) PARCE.9 30 28 27 28 27 28 21 20				MIRADOR PLAT ACRES 161 LOT ACRES	60.296 28.914	I, Kim C. Stelzer, New Mexico Professional Surveyor Number 7492, do hereby affirm that the property described does lie within the platting and extra-territorial subdivision jurisdiction of the County of Los Alarmos. Alarmos	
	3		TRACT A-19-B BOOK 132, PACE 565 DOCUMENT NO 1486580 BYC 11-16-205	NO. OF PARCELS NO. OF TRACTS		0.896	Kim C. Statzer NMPLS No. 7482	
ROAD NO.	TRACT BOOK 106,	C-1 N.M. STATE RD. NO. 4 3		AD MILES	1.401 ROAD ACRES	9.049	PART ESSIONAL PR	
	ROCK		DOCUMENT NO. 160547	20247			HUITT-ZOLIARS	S
		PINON FARK OO TRACT E acor 2. Pace as CO PINON PARK DOCUMENT No. 28297	E ARK				HUITT-ZOLLARS, INC. RIO RANCHO 3338 Brancho Diano S. Sala Brancho Diano S. Sala SU Rio Rancho New Mexico 8713 Phone (505) 882-5141 Fex (505) 882-3259	CHO

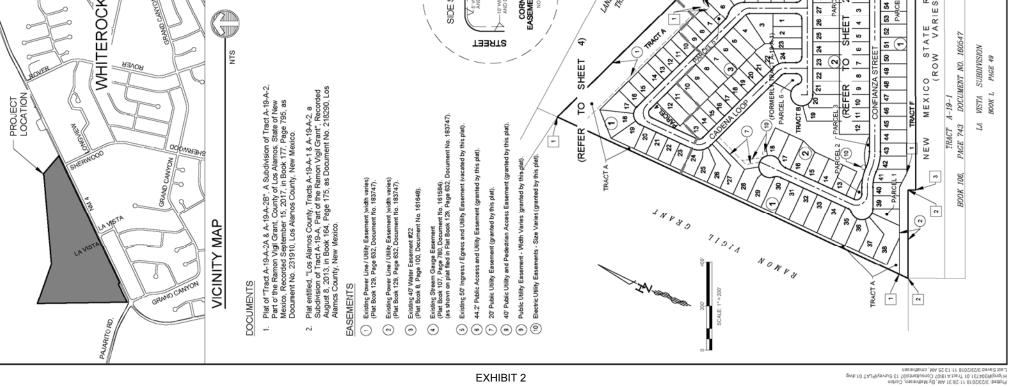


Exhibit E - Final Plat – 4 pages

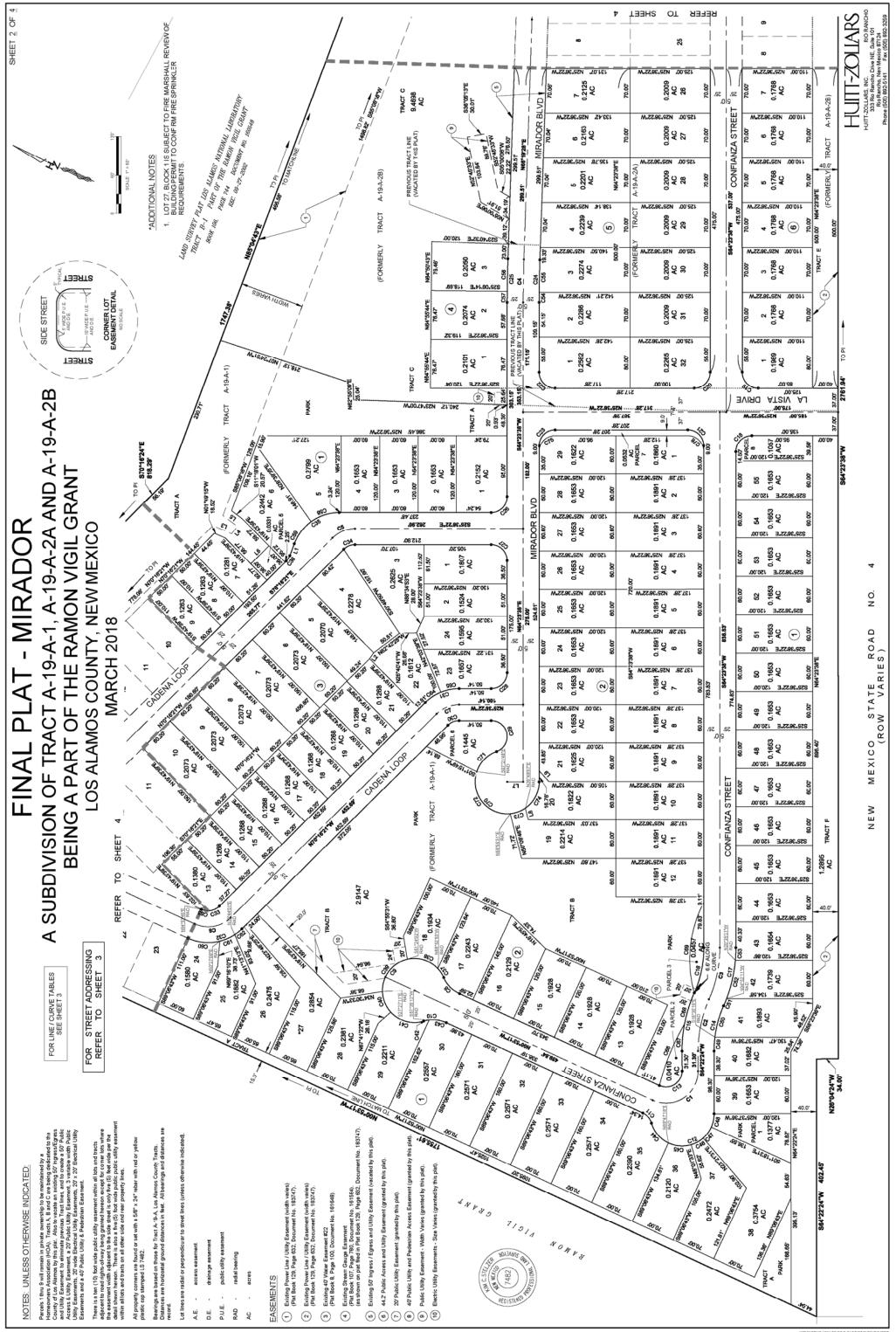


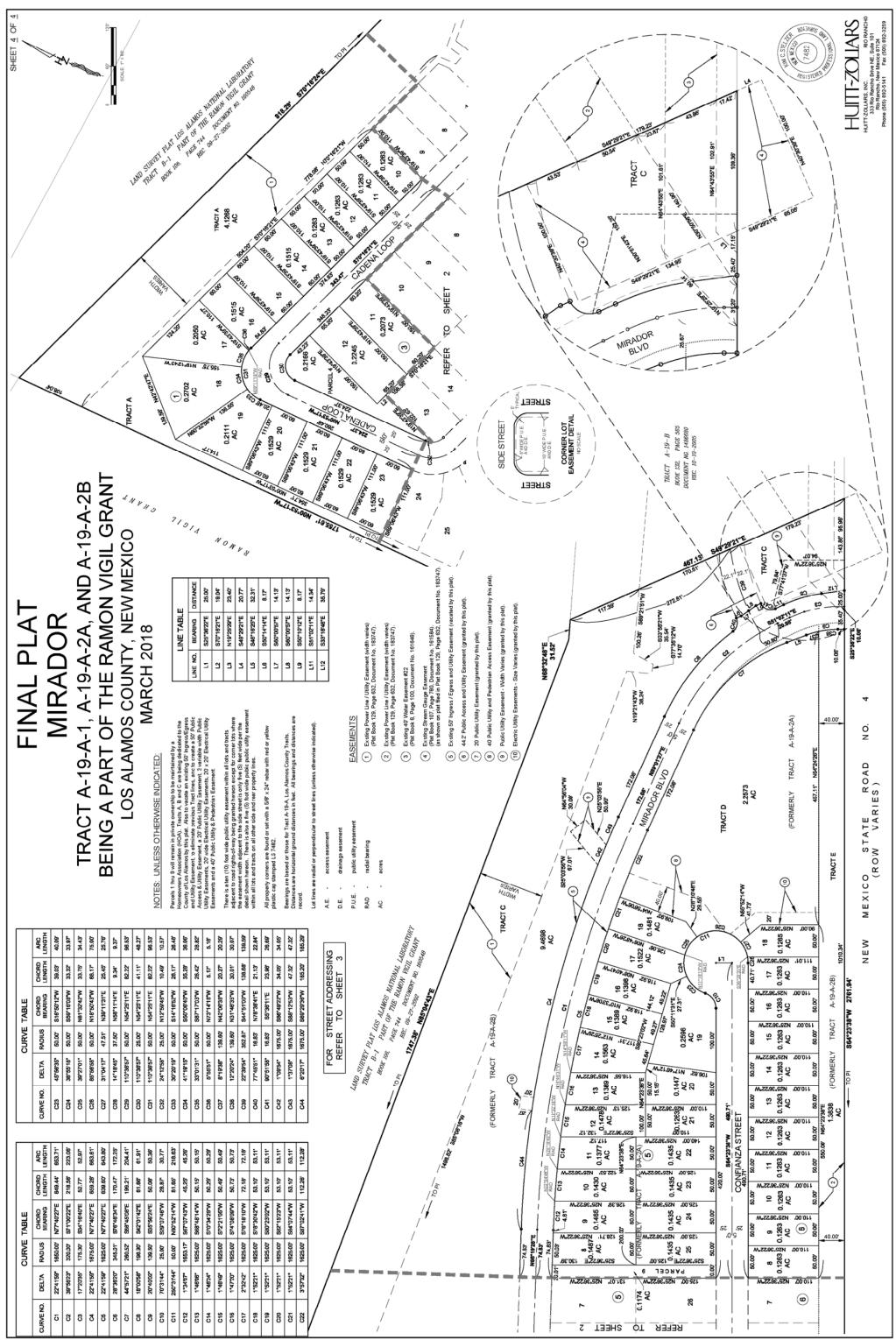
EXHIBIT 2 Exhibit E - Final Plat – 4 pages

A SUBDIVISION OF TRACT A-19-A-1, A-19-A-2A AND BEING A PART OF THE RAMON VIGIL GRANT FINAL PLAT - MIRADOR LOS ALAMOS COUNTY, NEW MEXICO A-19-A-2B

	ARC	LENGTH	83.13	808	67.30	38.98	60.55	38.98	36.14'	229.35	36.14'	21.20	142.53'	50.06	72.74	20.55	72.88	20.07	39.27	39.27	39.27	39.27"	39.27	66.55	68.23	39.97	39.27	70.04"	19.49'	58.47"	90.82	19.71	18.4%	10.73	16.93'	52.11	68.81	35.11'	56.38	8.63'	27.51	41.82	36.44	21.53	21.53"
	CHORD	LENGTH	82.54	82.47	106 29	38.00	56.92	38.00'	35.36	75.00'	35.36'	20.57"	98.94	42.11	72.22	.cg:76	72.16	36.36	35.36	35.36	35.36	35.36'	35.36'	66.54	68.23	36.36	35.36	49.28'	19.00'	57.00	85.37	19.20	19.00	10.65	16.85	49.79'	63.51'	34.40'	53.44	8.61'	27.17	40.61	35.64'	21.36'	21.36'
TABLE	CHORD	BEARING	W-12-01-9CN	S76°17'29'W	NR6*21'33*F	S47*56'21'E	N35°34'49"W	N47°56'21"W	S19*49'00'W	N89*06'43*E	N21°35'35"W	N23*24'30'E	N33°57'39"W	S58°15'27"E	S76°16'52"W		N76*17'29'E	M.RZ. JL.Q/S	N19°23'36'E	N70°36°22"W	N19*23'38'E	N19"23"36"E	N70*36*22*W	N65*21'33*E	N65"21"33"E	S/0"30'22'E	N70*38"22"W	N54*39'29*E	N47°56'21"W	N47°56'21"W	S35°34'49'E	N47°41'18"W	34/ 3021'E	S82"34'02"E	N30°49'12"E	N8°44"25"W	N78°01"35"W	S42°25'43"W	S9*59'37"E	N37*21*20*W	N16°39'03"W	S23°44'48"W	S21°05'34"E	S54°18'28"E	S78°58'30'E
			200.00	-	-	50.00	50.00'	+	50.00	50.00	50.00'	25.00'	50.00'	25.00'	175.00	00.622	-		25.00'	25.00'	25.00'	26.00'	-	1975.00'	2025.00	25.00	+	25.00'	25.00'	75.00'	75.00'	25.00'	N 20 24	25.00'	50.00'	50.00'	50.00	50.00'	50.00'	60.00	50.00'	50.00	50.00	50.00'	20.00
CURVE		NELIA	114'44'18' 23*48'58"	23°47"44"	1°55'50"	44"39"58"	69"23"03"	44°39'58"	41°24'35"	262*49'09"	41°24'35"	48°35'35"	163"19'54"	114°44'19"	23°48'58"	_96.94.57	23*47*44*	-00-00-00	-00.00.06	-00.00-06	90*00*00	90,00,00	90.00.08	1°55'50"	1*55'50	90-000-08	-00,00-06	160°31'44"	44°39'58"	44°39'58"	69°23'03"	45°10'06"	#4.3A.36	24"35"23"	19*24'10"	59*43'06"	78°51'13"	40°14'11"	64°36°30"	9°53'03"	31°31'31"	47°55'00"	41°45'45"	24°40'02"	BUANA PARA
		CURVE NU.	5 8	5 8	3 2	5 3	8	C1	8	8	C10	C1	C12	C13	C14	615	C18	2 e	C19	C20	C21	C22	C23	C24	C25	C28	C28	C29	C30	C31	C32	C33	5 5	8 8	C37	C38	C39	C40	5	C42	C43	C44	C45	C46	147

N86'39'35"E N77'16'09"E	225.00' NB6'39'35'E 226.00' N77'16'09'E	
	_	
N66'54'03"E	-	226.00
S64'37"25"W		1975.00"
S65*35"20"W		1*2815* 1975.00' S65'35'20'W
S65°39'57"W		1*19'00" 2025.00' S65'39'57"W
S64*42'02"W 21.69'	S64'42'02"W	
N43*28'24"W 46.02'		N43*28'24"W
N78'06'04"W 43.26'	-	N78'06'04"W
S20°13'05"E	75.00° S20°13'05*E	
S49'24'26*E	75.00' S49'24'26*E	
S64'46'10"E 14.38'		S64*46'10"E
N12'59'46"W 10.49"		N12*58'48"W
N59°06'21"W 29.05'		N59°06'21"W
N36'46'22"W 29.05'		N36'46'22"W
S86'34'37"W 104.85'		S86*34'37"W
S69'53'28'W 43.27'		S69*53'28"W
S81'47'57"W 50.08'		S81'47'57'W
S70°24'09"W 142.12"		S70*24'09"W
+-	S9"35'55"W	- 50.00° S9°35'55"W
_	S9"35'55"W	50.00 S9"35'55'W
	S9°35'55"W	50.00° S9°35'55"W
	SP0*24'09"W SP0*24'09"W SP*35'55"W	50.00 S9°3555W
	860-362/W 864/367/W 884/2027/W NH709604/W NH709604/W NH709604 84/461/26 84/461/26 NH729469/8/W N1299469/W N1299469/W N1299469/W S61914777/W 868727W 86914777/W 869147577W 86914777W 86914777W 86914777W 86914777W 86914777W 8691477W 869170W 8691	19.5.00 360 35 20 W 2025.00 866 '385 W 2025.00 864 '420 W 75.00 N18'08'04'W 75.00 N18'08'04'W 75.00 S44'22'W 75.00 N18'08'04'W 75.00 N18'08'04'W 75.00 N18'08'04'W 75.00 N18'08'11'W 75.00 N38'43'10'E 75.00 S84'45'10'E 75.00 S84'43'10'E 75.00 S84'43'10'E 75.00' S84'43'10'E 75.00' S84'43'W 75.00' S84'43'TW 25.00' S84'43'TW
W25725698 W2629570 W26269539570 W262604 W262604 W262670 W262604 W260604 W260604 W260604 W260604 W260604 W260604 W260604 W260604 W260604 W260604 W260604 W260604 W260604 W260604 W260604 W260604 W260604 W26060		1975.00 1975.00 1975.00 2025.00 2025.00 2025.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 255.00 255.00 255.00 255.00 255.00 255.00 255.00 255.00 255.00 255.00 255.00 255.00 255.00 255.00 255.00 255.00 255.00 255.00 255.00 255.00 255.00 255.00 255.00 255.00 255.00
	225.00 1975.00 2025.00 2025.00 75.00	

	LINE TABLE	
LINE NO.	BEARING	DISTANCE
5	N85"08'16"E	19.72
21	N80"36"55"W	11.14
г3	N01°49'15"W	31.78
7	N76°23'45"W	14.68'
L5	S11°18°01"W	28.55
гe	S70*16'21"E	40.00
L7	S25*36*22*E	25.00'
L8	N50*08'46"E	18.69'
F1	N21*30'54*E	22.04



ADDRESSES	21 CADENA LOOP	139 MIRADOR STREET	23 CADENA LOOP	25 CADENA LOOP	29 CADENA LOOP	31 CADENA LOOP	33 CADENA LOOP	35 CADENA LOOP	39 CADENA LOOP	41 CADENA LOOP	71 CADENA LOOP	73 CADENA LOOP	310	79 CADENA LOOP	81 CADENA LOOP	83 CADENA LOOP	85 CADENA LOOP	81 CADENA LOOP	91 CADENA LOOP	MIRADOR	MIRADOR	MIRADOR	MIRADOR	130 MIRADOR STREET	MIRADOR	MIRADOR	MIRADOR	MIRADOR	MIRADOR ST	114 MIRADOR STREET	MIRADOR ST	110 MIRADOR STREET	MIRADOR SI	104 MIRADOR STREET	102 MIRADOR STREET	100 MIRADOR STREET	108 CONFIANZA STREET	110 CONFIANZA STREET	106 CONFIANZA STREET 104 CONFIANZA STREET	102 CONFIANZA STREET	CONFIANZ	ONFIANZ	ONFIANZ	94 CONFIANZA STREET 92 CONFIANZA STREET	ONFIANZ	ONFIANZ	86 CONFIANZA STREET	CONFLANZA ST	CONFIANZA ST	CONFIANZA ST	CONFIANZA ST	CONFIANZA ST	CONFIANZA ST	91 CONFIANZA STREET	CONFIANZA ST	CONFIANZA ST	CONFIANZA ST	99 CONFIANZA STREET	101 CONFIANZA STREET	105 CONFIANZA STREET	107 CONFIANZA STREET	109 CONFIANZA STREET	111 CONFIANZA STREET	113 CONFIANZA STREET	115 CONFIANZA STREET
ADC	BLOCK 3 / LOT 1	BLOCK 3 / LOT 2	BLOCK 3 / LOT 3	BLOCK3 / LOT 4 BLOCK3 / LOT 6	518	ίК	DCK3 / LOT	BLOCK 3 / LOT 9	CK3 / LOT	CK 3 / LOT	/ LOT	BLOCK3 / LOT 14	BLOCK 3 / LOT 15 BLOCK 2 / LOT 16	BLOCK 3 / LOT 18	BLOCK 3 / LOT 18	BLOCK 3 / LOT 19	BLOCK 3 / LOT 20	BLOCK 3 / LOT 21	BLOCK 3 / LOT 23	BLOCK 3 / LOT 24	BLOCK 4 / LOT 1	BLOCK 4 / LOT 2	BLOCK 4 / LOT 3	BLOCK 5 / LOT 1	BLOCK 5 / LOT 2	BLOCK 5 / LOT 3	BLOCK 5 / LOT 6	/ LOT	BLOCK 5 / LOT 8	5 / LOT	BLOCK 5 / LOT 10	BLOCK 5 / LOT 11	BLOCK 5 / LOT 12 BLOCK 5 / LOT 13	BLOCK 5 / LOT 13	BLOCK 5 / LOT 15	BLOCK 5 / LOT 16	BLOCK 5 / LOT 17	BLOCK 5 / LOT 18	BLOCK 5 / LOT 19 BLOCK 5 / LOT 20	BLOCK 5 / LOT 21	BLOCK 5 / LOT 22	BLOCK 5 / LOT 23	BLOCK 5 / LOT 24	BLOCK 5 / LOT 25 BLOCK 5 / LOT 26	BLOCK 5 / LOT 27	BLOCK 5 / LOT 28	BLOCK 5 / LOT 29	BLOCK 5 / LOT 30 BLOCK 5 / LOT 31	BLOCK 5 / LOT 32	BLOCK 6 / LOT 1	BLOCK 6 / LOT 2	BLOCK 6 / LOT 3	OCK 6 / LOT	BLOCK 6 / LOT 6	OCK 6 / LOT	OCK 6 / LOT	OCK 6 / LOT	BLOCK 6 / LOT 10		BLOCK 6 / LOT 12	BLOCK 6 / LOT 14	BLOCK 6 / LOT 15	BLOCK 6 / LOT 16	BLOCK 6 / LOT 17	BLOCK 6 / LOT 18

STREET ADDRESS 20 CADENA LOOP	22 CADENA LOOP 24 CADENA LOOP	26 CADENA LOOP	28 CADENA LOOP	32 CADENA LOOP	34 CADENA LOOP	R	9	5 5	0	48 CADENA LOOP	52 CADENA LOOP	54 CADENA LOOP	56 CADENA LOOP	60 CADENA LOOP	62 CADENA LOOP	66 CADENA LOOP	68 CADENA LOOP	70 CADENA LOOP 72 CADENA LOOP	15 CONFIANZA STREE	ANZA ST	19 CONFIANZA STREE		NFIANZA ST	27 CONFIANZA STREE	NFIANZA ST NFIANZA ST	CONFIANZA STF	ANZA STF	39 CONFIANZA STREE	NZA ST	ANZA STI	47 CONFIANZA STREE	ANZA STF	ANZA S	55 CONFIANZA STREE	ANZA S ANZA S	ANZA S	ANZA STR	NZA ST	69 CONFIANZA STREE	ZAS	ZA STR	ZAS	ZA STR	VFIANZA STF	56 CONFIANZA STREE	VFIANZA STF	VFIANZA	48 CONFIANZA STREET	26 CONFIANZA STREE 24 CONFIANZA STREE	NFIANZA ST	NFIANZA	18 CONFIANZA STREE 16 CONFIANZA STREE	152 MIRADOR STREET	150 MIRADOR STREET	148 MIRADOR STREET	146 MIRADOR STREET	142 MIRADOR STREE	140 MIRADOR STREE	138 MIRADOR STREE
BLOCK / LOT NUMBER BLOCK 1 / LOT 1	BLOCK 1 / LOT 2 BLOCK 1 / LOT 3	BLOCK / / LOT 4	BLOCK 1 / LOT 5	BLOCK 1 / LOT 7	BLOCK / / LOT 8	BLOCK 1 / LOT 10	BLOCK 1 / LOT 11	BLOCK 1 / LOT 12 BLOCK 1 / LOT 13	BLOCK 1 / LOT 14	BLOCK 1 / LOT 15	BLOCK 1 / LOT 17 BLOCK 1 / LOT 17	BLOCK 1 / LOT 18	BLOCK 1 / LOT 19 BLOCK 1 / LOT 20	BLOCK 1 / LOT 21	BLOCK 1 / LOT 22	BLOCK 1 / LOT 23 BLOCK 1 / LOT 24	BLOCK 1 / LOT 25	BLOCK 1 / LOT 26 BLOCK 1 / LOT 27	BLOCK 1 / LOT 28	BLOCK 1 / LOT 29	BLOCK 1 / LOT 30	BLOCK 1 / LOT 31 BLOCK 1 / LOT 32	BLOCK 1 / LOT 33	BLOCK 1 / LOT 34	BLOCK 1 / LOT 35 BLOCK 1 / LOT 36	BLOCK 1 / LOT 37	BLOCK 1 / LOT 38	BLOCK 1 / LOT 39 BLOCK 1 / LOT 40	BLOCK 1 / LOT 41	BLOCK 1 / LOT 42 BLOCK 1 / LOT 42	BLOCK 1 / LOT 44	BLOCK 1 / LOT 45 BLOCK 1 / LOT 46	BLOCK 1 / LOT 47	BLOCK 1 / LOT 48	BLOCK 1 / LOT 49 BLOCK 1 / LOT 50	BLOCK 1 / LOT 51	BLOCK 1 / LOT 52	BLOCK 1 / LOT 54	BLOCK 1 / LOT 55	BLOCK 2 / LOT 1 BLOCK 2 / LOT 2	BLOCK 2 / LOT 3	CK 2 / LOT	BLOCK 2 / LOT 5 BLOCK 2 / LOT 6	OCK 2 / LOT	BLOCK 2 / LOT 8	DCK 2 / LOT	BLOCK 2 / LOT 11	BLOCK 2 / LOT 12	BLOCK 2 / LOT 13 BLOCK 2 / LOT 14	BLOCK 2 / LOT 15	BLOCK 2 / LOT 16	BLOCK 2 / LOT 17 BLOCK 2 / LOT 18	BLOCK 2 / LOT 19	BLOCK 2 / LOT 20	BLOCK 2 / LOT 21	BLOCK 2 / LOT 22	BLOCK 2 / LOT 24	BLOCK 2 / LOT 25	BLOCK 2 / LOT 26

gwb.co-co TAJ9/yavru2 ct.

EXHIBIT 2 Exhibit E - Final Plat – 4 pages

Flotted: S/2/30111 11:39:31 MB, MB, MB, MB, MPLEN, Corbin H.Yeng/H304731 01 Tracts 19107 Consultantistic H.Yeng/H304731 01 Tracts 19107 Consultantistic

EXHIBIT 2 Exhibit E - Final Plat – 4 pages