

Integrated Resource Planning Follow Up Analysis

Presented to: Los Alamos County

November 8, 2017

Agenda

- IRP Portfolio Costs
 Adjustments
- Cost of Carbon Neutral Compliance
- Value of a Combined Entity Post 2025
 - Quantified Value Evaluation
 - Qualitative Assessment of Synergies

IRP Portfolio Costs Adjustments

Portfolio Costs Adjusted Upwards to More Appropriately Reflect True Solar Costs

- Pace Global adjusted the way the solar resources are modeled to capture full costs, which resulted in incremental costs for all IRP Stochastic Portfolios.
- Stochastic Portfolio 9 remains to be the most cost effective portfolio and IRP conclusions do not change.

Issue 1: Cost of Carbon Neutral Compliance

Cost of Carbon Neutral Compliance Estimated at \$14.3 Million Extra for LAC over the IRP Horizon

Cost of Carbon Neutral Compliance Estimated at \$14.3 Million Extra for LAC over the IRP Horizon

Portfolio	LAPP New Builds	Average Reserve Margin (2017-2036)	2017-2036 NPV Costs (\$2016 Thousand)
S9: Solar with Storage Short Capacity	Solar with Storage (onsite): • 2017 - 13 MW • 2025 - 8 MW • 2030 - 6 MW	LAPP Summer: -11% LAPP Winter: -26%	\$415,770
S12: Solar with Storage CC Short Capacity	Solar with Storage (onsite): • 2017 - 10 MW • 2025 - 5 MW CC (offsite): • 2017 - 3 MW • 2025 - 3 MW • 2030 - 6 MW	LAPP Summer: -11% LAPP Winter: -26%	\$401,477

- Stochastic portfolio 9 and 12 provide insight of potential costs of the carbon neutral compliance for LAC.
- No compliance portfolio falls far short of LAC's Carbon Neutral Goal by 2040.

Stochastic Portfolio 9 Focuses on Solar with Storage (Short Capacity)

Stochastic Portfolio 12 Replaces Some Solar with Storage Capacity with CC

Stochastic Portfolio 12 builds solar with storage for LANL compliance and purchase shares of a large CC to maintain the same reserve margin as Stochastic Portfolio 9.

Issue 2: Value of a Combined Entity Post 2025

Background: Value of Combined Entity Post 2025

- The IRP (June 2017) involved a preliminary assessment of the benefit of extending the ECA based on a deterministic analysis.
 - The analysis showed that the ECA extension post 2025 provided a lower Net Present Value (NPV) costs for the combined entity than if both parties agreed to separate.
 - This deterministic portfolio however, did not turn out to be the preferred portfolio after completing the stochastic analysis.
 - Hence we need to rerun the evaluation of the ECA extension using the "preferred stochastic portfolio" rather that the deterministic least cost portfolio as the basis of the analysis.
- In addition, our preliminary analysis indicated that the current allocation method does not appear to be optimal, since LANL benefits from joint operation while LAC benefits from separation.
- Since the savings to LANL exceed the higher costs for LAC, there are opportunities for both parties to benefit from continued joint operation with a different allocation scheme.
- The order of magnitude of the savings and costs for both parties must also be updated to reflect a comparison with the Preferred Resource Plan.

Value of a Combined Entity Post 2025 is Evident in both Savings and Synergies

Combined Portfolio is More Economic than Split Portfolios of LAC and LANL (Post 2025)

Portfolio	LAPP New Builds	Average Reserve Margin (2017-2036)	Total NPV Costs (\$2016 Thousand)
S9 Preferred Resource Plan	Solar with Storage (onsite): • 2017 - 13 MW • 2025 - 8 MW • 2030 - 6 MW	LAPP Summer: -11% LAPP Winter: -26%	LAC : \$64,950 LANL: \$350,820 Total : \$415,770
S13.1 (Split – LAC)	Solar with Storage: • 2017 - 3 MW • 2030 - 6 MW	LAC Summer: 65% LAC Winter: -11%	LAC: \$ 60,037
D13.2 (Split – LANL)	Solar with Storage: • 2017 - 10 MW • 2025 - 8 MW	LANL Summer: -47% LANL Winter: -46%	LANL: \$ 361,530
D13 (LAC + LANL)			LAC:\$60,037 LANL:\$361,530 Total:\$421,567

- Splitting post 2025 results in lower costs for LAC, but higher costs for LANL.
- This suggests potentially different allocation of costs among the two parties for a **win-win** solution.

Splitting Post 2025 Results in Lower Costs for LAC, but Higher Costs for LANL

NPV (\$000)	Portfolio 13 (Split after 2025)	Portfolio 9 (ECA Extension)	LANL Savings (Expenses)
LANL	361,530	350,820	10,709
LAC	60,037	64,950	(4,912)
LANL + LAC	421,567	415,770	5,797

- Splitting post 2025 results in lower costs for LAC, but higher costs for LANL.
- This suggests potentially different allocation of costs among the two parties for a win-win solution.

Compelling Synergies for the LAPP to Extend ECA Post 2025

- Maximize the value of hydro generation resources on federal land by allowing LANL to tap into double RECs.
- A split scenario increases the volume of market transactions for both parties and further exposing them to market risks, unless the parties enter into contractual PPA agreement.
- LAPP optimizes the value of LRS PPA by directly serving LAPP load. In a split scenario, LAC will likely sell excess power into the market.
- A LAPP pool allows the two parties to jointly pursue solar and storage opportunities. This could lead to cost savings through economies of scale.
- A split scenario implies potential duplicate functions in the two organizations for procuring and managing energy, capacity, and ancillary services.
- Complementary load shapes of LANL and LAC provides value to both entities, particularly in a market with increasing DER, intermittent resources, and balancing needs.

LAC Brings Fully Amortized Low Cost Resources to the Pool

- Two local hydroelectric power plants (Abiquiu and El Vado) with a summer capacity of 23.8 MW and winter capacity of 4 MW. The debt services on both plants have been fully paid off, providing renewable and low cost power.
- A 10 MW PPA with Laramie River Station (LRS) through the life of the plant. As a must-run unit, LRS costs are on par with market prices and could be relied upon to serve its load.
- Solar facility (1 MW) and WAPA hydro PPA (1 MW)

Note: San Juan Unit 4 is expected to retire in 2022.

A Split Scenario will Discontinue LANL's Access to LAC's Hydro and Solar Resources that Qualify for Double RECs

- The 1 MW Solar Project at LANL TA-61 site, together with Abiquiu Unit 3 are located on federal land and they qualify for double renewable energy credits (RECs) for LANL.
- In a split scenario, LANL will not have access to the renewable generation credits from the hydro resources and the low priced base load power from LRS, unless a separate contractual arrangement could be struck between LAC and LANL.
- To maintain its renewable generation compliance, LANL must refill these renewable resources locally. This could be challenging from a timing and cost perspective, especially considering the uncertainty of the local federal land availability for solar projects.

On the Other Hand, LAC will Need to Be Long In Capacity in the Summer Given its Carbon Neutral Goal by 2040

- To achieve milestones towards a carbon neutral goal by 2040, LAC will need to sell the power produced in LRS to the WECC market, while building/contracting renewable capacities to meet the carbon neutral goal.
- This indicates a long capacity position in the current market outlook that does not reward building portfolios with excess capacity.
- A split scenario will mean that LAC will lose access to the only gas fired generation in the LANL pool.

Complementary Load Shapes are Valuable in a Market with Increasing DER and Balancing Needs

- LANL and LAC load shapes complement each other.
 - LANL load typically peaks during the afternoon, when the air conditioning and the laboratory equipment are in use
 - LAC load typically peaks in the evening
- Such complementary load shapes provide value to both entities, particularly in a market with increasing DER, intermittent resources, and balancing needs.

