Pumped Hydro Analysis

Tyler Mobraten DPU-Engineering Intern August 22, 2019

2016 FER Strategic Policy

Explore feasibility (including access to present DOE/LANL lands) and estimate costs of pumped hydro storage somewhere within Los Alamos County

Pumped Hydro

Energy is used to pump water to higher elevation Water is released through a hydroelectric turbine to generate electricity when needed

Simple, mature technology Minimal storage losses 70-80% round trip efficiency Resiliency if locally sited (microgrid) Fast Response Long Lifespan Storage of renewable energy

- Low energy density
- Large Size
- High capital cost

Applications

Peak Shaving

Renewable Energy Storage

LAC Generation Resource Options

Hydroelectric plants backbone of supply (FER Directive #5) 8MW CFPP (FER Directive #8)

Pumped hydro storage (FER Directive #11)

Plan to match pumped hydro storage with renewable PV array per carbon neutral goal

Generation vs. Load

Abiquiu & El Vado 10-yr. avg. 62,000 MWh/yr. CFPP (8 MW @ 95% cf) 66,000 MWh/yr. Total carbon free generation 128,000 MWh/yr.

County Load 120,000 MWh/yr.

Excess of 8,000 MWh, 6.7% positive reserve margin

Annual LAC Resources vs. Load

CFPP

35

–LAC Demand

Generation Deficit

Month	Generation Deficit (MWh)
January	3067.83
February	3282.102
March	2288.303
April	-3521.85
Мау	-5234.47
June	-7261.36
July	-1920.44
August	-3653.95
September	-524.43
October	1405.247
November	1352.947
December	5.144923

2/1/2012

2/1/2012

LAC Pumped Hydro System Design Parameters

Designed to store power to meet county load

Solar array oversized to provide excess power to be stored Only needed 4 months out of the year due to runoff through the hydroelectric plants

Site Plan

Project Cost

Pond Qty 2 (/cuyd)	\$4	531,000.00	\$2,124,000.00	Calculated based on amount of water
Pond Liner (/sqft)	\$0.72	1,440,000.00	\$1,035,360.00	Vendor Quote
Turbine	\$2,885,000	1.00	\$2,885,000.00	Vendor Quote
Electric Generation Line (/mi)	\$150,000	5.00	\$750,000.00	T&D Estimate on /mi installation cost 69kV line
Substation	\$2,500,000	1.00	\$2,500,000.00	Estimated from installation cost of WR2 Sub
40" Pipe + Microtunneling (/ft)	\$1,200	3,748.00	\$4,497,600.00	Research from vendors
Access Road	\$4	185,186.00	\$740,744.00	Calculated based on earth moving 45 degree slope 12' wide road, not exceeding 6% grade
O&M (/yr)	\$200,000	25.00	\$5,000,000.00	Based on O&M cost of current hydroelectric facilites
Environmental Review	\$250,000	1.00	\$250,000	
Property Acquisition	\$0	0.00	\$0.00	
Installation Infrastructure	\$0	1.00	\$0.00	
Energy for Pumps	\$0	0.00	\$0.00	
Pumps	\$0	0.00	\$0.00	
Electric Line Right of Way	\$0	0.00	\$0.00	
Financing Cost			\$ <u>0.00</u>	
Contingency			\$1,953,270.40	
Total			\$21,760,974.40	

Energy Storage Cost - \$60.16 /MWH

Price per MWH calculated using only power demanded by the county

- Excess power is assumed to be curtailed
- Cost is calculated using County energy requirements over the 25 year life span

Feasibility

- Land and easements would still need to be obtained from DOE/LANL
- Project would need to pass environmental review
- Large enough pumps were not readily available from vendors
- Reversible turbines are not manufactured on a small enough scale to be feasible

Conclusion

Pumped hydro does not work well with our current generation resource profile

- With the limitations of current technology, pumped hydro is not economically feasible within Los Alamos County
- Other alternatives will provide superior value

